A new population initialization of metaheuristic algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature selection

初始化 特征选择 计算机科学 元启发式 滤波器(信号处理) 人口 人工智能 数据挖掘 特征(语言学) 算法 模糊逻辑 遗传算法 粗集 维数之咒 机器学习 模式识别(心理学) 语言学 哲学 人口学 社会学 计算机视觉 程序设计语言
作者
Xuanming Guo,Jiao Hu,Helong Yu,Mingjing Wang,Bo Yang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107538-107538 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107538
摘要

In the realm of modern medicine and biology, vast amounts of genetic data with high complexity are available. However, dealing with such high-dimensional data poses challenges due to increased processing complexity and size. Identifying critical genes to reduce data dimensionality is essential. The filter-wrapper hybrid method is a commonly used approach in feature selection. Most of these methods employ filters such as MRMR and ReliefF, but the performance of these simple filters is limited. Rough set methods, on the other hand, are a type of filter method that outperforms traditional filters. Simultaneously, many studies have pointed out the crucial importance of good initialization strategies for the performance of the metaheuristic algorithm (a type of wrapper-based method). Combining these two points, this paper proposes a novel filter-wrapper hybrid method for high-dimensional feature selection. To be specific, we utilize the variant of bWOA (binary Whale Optimization Algorithm) based on Hybrid Fuzzy Rough Set to perform attribute reduction, and the reduced attributes are used as prior knowledge to initialize the population. We then employ metaheuristics for further feature selection based on this initialized population. We conducted experiments using five different algorithms on 14 UCI datasets. The experiment results show that after applying the initialization method proposed in this article, the performance of five enhanced algorithms, has shown significant improvement. Particularly, the improved bMFO using our initialization method: fuzzy_bMFO outperformed six currently advanced algorithms, indicating that our initialization method for metaheuristic algorithms is suitable for high-dimensional feature selection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东方不败完成签到 ,获得积分10
刚刚
sdl发布了新的文献求助10
1秒前
共享精神应助kk采纳,获得10
1秒前
orixero应助kk采纳,获得10
1秒前
深情安青应助kk采纳,获得10
1秒前
小二郎应助kk采纳,获得10
1秒前
Lll发布了新的文献求助10
1秒前
Maru完成签到,获得积分10
1秒前
1秒前
碧蓝金针菇应助XXXX采纳,获得10
1秒前
fangchenxi发布了新的文献求助10
2秒前
小西瓜发布了新的文献求助20
3秒前
火星上笑容完成签到,获得积分10
4秒前
guan完成签到,获得积分10
4秒前
邬不污完成签到,获得积分10
4秒前
4秒前
4秒前
萱萱发布了新的文献求助10
4秒前
5秒前
5秒前
饺子完成签到,获得积分10
5秒前
杨舒完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
7秒前
英姑应助fangchenxi采纳,获得10
7秒前
大模型应助美丽星期五采纳,获得10
7秒前
柚C美式发布了新的文献求助10
8秒前
糖醋排骨完成签到,获得积分10
8秒前
NexusExplorer应助τ涛采纳,获得10
9秒前
9秒前
Sophiaaa发布了新的文献求助10
9秒前
平常元灵完成签到,获得积分10
9秒前
满天星发布了新的文献求助10
10秒前
投石问路发布了新的文献求助200
11秒前
香蕉梨愁发布了新的文献求助10
11秒前
寒冷的天亦完成签到,获得积分10
11秒前
future发布了新的文献求助10
11秒前
忧心的洙完成签到,获得积分10
11秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4100777
求助须知:如何正确求助?哪些是违规求助? 3638597
关于积分的说明 11530345
捐赠科研通 3347339
什么是DOI,文献DOI怎么找? 1839630
邀请新用户注册赠送积分活动 906838
科研通“疑难数据库(出版商)”最低求助积分说明 824049