A new population initialization of metaheuristic algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature selection

初始化 特征选择 计算机科学 元启发式 滤波器(信号处理) 人口 人工智能 数据挖掘 特征(语言学) 算法 模糊逻辑 遗传算法 粗集 维数之咒 机器学习 模式识别(心理学) 语言学 哲学 人口学 社会学 计算机视觉 程序设计语言
作者
Xuanming Guo,Jiao Hu,Helong Yu,Mingjing Wang,Bo Yang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107538-107538 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107538
摘要

In the realm of modern medicine and biology, vast amounts of genetic data with high complexity are available. However, dealing with such high-dimensional data poses challenges due to increased processing complexity and size. Identifying critical genes to reduce data dimensionality is essential. The filter-wrapper hybrid method is a commonly used approach in feature selection. Most of these methods employ filters such as MRMR and ReliefF, but the performance of these simple filters is limited. Rough set methods, on the other hand, are a type of filter method that outperforms traditional filters. Simultaneously, many studies have pointed out the crucial importance of good initialization strategies for the performance of the metaheuristic algorithm (a type of wrapper-based method). Combining these two points, this paper proposes a novel filter-wrapper hybrid method for high-dimensional feature selection. To be specific, we utilize the variant of bWOA (binary Whale Optimization Algorithm) based on Hybrid Fuzzy Rough Set to perform attribute reduction, and the reduced attributes are used as prior knowledge to initialize the population. We then employ metaheuristics for further feature selection based on this initialized population. We conducted experiments using five different algorithms on 14 UCI datasets. The experiment results show that after applying the initialization method proposed in this article, the performance of five enhanced algorithms, has shown significant improvement. Particularly, the improved bMFO using our initialization method: fuzzy_bMFO outperformed six currently advanced algorithms, indicating that our initialization method for metaheuristic algorithms is suitable for high-dimensional feature selection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心的逍遥完成签到,获得积分10
1秒前
nuantong1shy完成签到,获得积分10
1秒前
二十八发布了新的文献求助20
3秒前
huyuan完成签到,获得积分10
4秒前
电闪完成签到,获得积分10
4秒前
铎幸福应助魂逝之采纳,获得50
4秒前
meimale完成签到,获得积分10
5秒前
俊逸的香萱完成签到,获得积分10
5秒前
6秒前
陈曦完成签到,获得积分10
6秒前
feixue完成签到,获得积分10
6秒前
多余完成签到,获得积分10
6秒前
周先森完成签到,获得积分10
7秒前
Baelfire完成签到,获得积分10
8秒前
suliang完成签到,获得积分10
8秒前
bao完成签到,获得积分10
9秒前
踏实的盼秋完成签到,获得积分10
9秒前
悲凉的胡萝卜完成签到 ,获得积分10
9秒前
nini完成签到 ,获得积分10
9秒前
科研疯狗发布了新的文献求助10
10秒前
端庄幻桃完成签到 ,获得积分10
11秒前
12秒前
豆豆小baby完成签到,获得积分10
12秒前
gms完成签到,获得积分10
12秒前
小笨猪完成签到,获得积分10
14秒前
醉翁完成签到,获得积分10
15秒前
萝卜卷心菜完成签到 ,获得积分10
17秒前
独特跳跳糖完成签到 ,获得积分10
17秒前
ethan2801完成签到,获得积分10
17秒前
畅快芝麻完成签到,获得积分10
17秒前
闹一闹吧费曼先生完成签到 ,获得积分10
19秒前
你一头牛牛牛牛完成签到,获得积分10
19秒前
白元正完成签到,获得积分10
19秒前
20秒前
yfwuy发布了新的文献求助10
21秒前
聂落雁完成签到,获得积分10
22秒前
穆一手完成签到 ,获得积分10
22秒前
silsotiscolor完成签到,获得积分10
22秒前
23秒前
细心妙菡完成签到 ,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795639
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301387
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805488
科研通“疑难数据库(出版商)”最低求助积分说明 762626