Graph neural networks classify molecular geometry and design novel order parameters of crystal and liquid

计算机科学 人工神经网络 卷积神经网络 人工智能 图形 方向(向量空间) 算法 深度学习 模式识别(心理学) 理论计算机科学 几何学 数学
作者
Satoki Ishiai,Katsuhiro Endo,Kenji Yasuoka
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (6) 被引量:7
标识
DOI:10.1063/5.0156203
摘要

Molecular dynamics simulation produces three-dimensional data on molecular structures. The classification of molecular structure is an important task. Conventionally, various order parameters are used to classify different structures of liquid and crystal. Recently, machine learning (ML) methods have been proposed based on order parameters to find optimal choices or use them as input features of neural networks. Conventional ML methods still require manual operation, such as calculating the conventional order parameters and manipulating data to impose rotational/translational invariance. Conversely, deep learning models that satisfy invariance are useful because they can automatically learn and classify three-dimensional structural features. However, in addition to the difficulty of making the learned features explainable, deep learning models require information on large structures for highly accurate classification, making it difficult to use the obtained parameters for structural analysis. In this work, we apply two types of graph neural network models, the graph convolutional network (GCN) and the tensor embedded atom network (TeaNet), to classify the structures of Lennard-Jones (LJ) systems and water systems. Both models satisfy invariance, while GCN uses only length information between nodes. TeaNet uses length and orientation information between nodes and edges, allowing it to recognize molecular geometry efficiently. TeaNet achieved a highly accurate classification with an extremely small molecular structure, i.e., when the number of input molecules is 17 for the LJ system and 9 for the water system, the accuracy is 98.9% and 99.8%, respectively. This is an advantage of our method over conventional order parameters and ML methods such as GCN, which require a large molecular structure or the information of wider area neighbors. Furthermore, we verified that TeaNet could build novel order parameters without manual operation. Because TeaNet can recognize extremely small local structures with high accuracy, all structures can be mapped to a low-dimensional parameter space that can explain structural features. TeaNet offers an alternative to conventional order parameters because of its novelty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助健忘外套采纳,获得10
3秒前
骄阳似我发布了新的文献求助10
4秒前
科目三应助su采纳,获得10
5秒前
6秒前
窗户上的喵咪很无聊完成签到 ,获得积分10
7秒前
8秒前
骄阳似我完成签到,获得积分10
11秒前
love454106发布了新的文献求助10
12秒前
12秒前
奂锐123发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
卡卡咧咧完成签到,获得积分10
15秒前
asnly发布了新的文献求助10
18秒前
love454106完成签到,获得积分10
19秒前
su完成签到,获得积分20
19秒前
tianxiong发布了新的文献求助30
20秒前
su发布了新的文献求助10
21秒前
orixero应助啦啦啦啦啦采纳,获得10
23秒前
yltstt完成签到,获得积分10
24秒前
星辰大海应助落后醉易采纳,获得10
24秒前
深情安青应助Duan采纳,获得10
25秒前
英俊的铭应助满当当采纳,获得10
27秒前
852应助zryyy采纳,获得10
27秒前
28秒前
yingpengyu完成签到 ,获得积分10
28秒前
Chirs完成签到,获得积分10
29秒前
留胡子的夜白关注了科研通微信公众号
31秒前
爆米花应助奂锐123采纳,获得10
33秒前
z_king_d_23发布了新的文献求助10
34秒前
40秒前
科研通AI5应助z_king_d_23采纳,获得10
40秒前
Diana发布了新的文献求助20
41秒前
ricown完成签到,获得积分10
44秒前
吃不完完成签到,获得积分10
44秒前
十文字发布了新的文献求助10
45秒前
46秒前
47秒前
科研通AI5应助用户12306采纳,获得10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778910
求助须知:如何正确求助?哪些是违规求助? 3324505
关于积分的说明 10218641
捐赠科研通 3039496
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440