An electronic nose for harmful gas early detection based on a hybrid deep learning method H-CRNN

计算机科学 电子鼻 鼻子 人工智能 生物 解剖
作者
Guosheng Mao,Yanmei Zhang,Xu Yang,Xiaoyu Li,Min Xu,Yiyi Zhang,Pengfei Jia
出处
期刊:Microchemical Journal [Elsevier]
卷期号:195: 109464-109464 被引量:24
标识
DOI:10.1016/j.microc.2023.109464
摘要

Among harmful gases, carbon monoxide (CO) has posed a significant threat to human safety due to its concealment and harmfulness. Therefore, it’s imperative for the preservation of human safety to implement early detection for CO concentration. However, traditional methods for gas detection are either plagued by the limitations of insufficient accuracy like electronic nose (E-nose) equipped with relatively simple machine learning algorithms such as vanilla SVM or RNN, or limited by the incapacity to make early prediction such as sensory analysis, which requires a large amount of manpower resources and time. To address this issue, a novel technique, namely H-CRNN, is presented for E-nose to perform early prediction of low concentration CO, leveraging the strengths of convolutional and recurrent neural network to efficiently capture long-term dependencies within data. Also, shortcut connection and a novel gated attention mechanism is applied to enhance the capacity to capture crucial features. Furthermore, a linear process unit has been incorporated to handle the scale insensitivity issue. The experimental results show that the proposed H-CRNN outperforms RNN with a notable average reduction of 50.51% in the root relative squared error and 53.8% in the relative absolute error, and exhibits varying degrees of improvement when compared to state-of-the-art algorithms (TCN, TPA-LSTM, STCN, LSTNet, LSTM). Additionally, the H-CRNN achieved an average accuracy rate of 96.42%, surpassing all other algorithms and demonstrating the highest level of performance. Therefore, our work substantiates the proposed H-CRNN as an applicable method for early prediction of CO concentration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助Zhangll采纳,获得10
1秒前
时衍发布了新的文献求助10
2秒前
4秒前
徐凤年完成签到 ,获得积分10
5秒前
wzt完成签到,获得积分10
6秒前
摩天大楼完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
CodeCraft应助jiayelong采纳,获得10
7秒前
哎哟我去完成签到,获得积分10
8秒前
77最可爱完成签到,获得积分10
8秒前
香蕉觅云应助yyyy采纳,获得10
8秒前
跳跃小伙完成签到 ,获得积分10
9秒前
H里波特完成签到,获得积分10
9秒前
欣欣发布了新的文献求助10
9秒前
Sun发布了新的文献求助10
10秒前
beizi完成签到,获得积分10
10秒前
隐形曼青应助悲凉的新筠采纳,获得10
10秒前
HAOHAO完成签到,获得积分10
11秒前
13秒前
罗伊黄完成签到 ,获得积分10
13秒前
14秒前
bkagyin应助dengdengdeng采纳,获得10
15秒前
上官盼旋完成签到,获得积分10
16秒前
圆圆完成签到,获得积分10
16秒前
16秒前
17秒前
微笑越泽发布了新的文献求助10
18秒前
18秒前
今后应助圆圆采纳,获得10
19秒前
Ava应助欣欣采纳,获得10
20秒前
22秒前
梦泊发布了新的文献求助10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
23秒前
pluto应助科研通管家采纳,获得10
23秒前
Zhangll发布了新的文献求助10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
大宝君应助科研通管家采纳,获得30
24秒前
无极微光应助科研通管家采纳,获得20
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093