MsGEN: Measuring generalization of nutrient value prediction across different recipe datasets

配方 一般化 计算机科学 概化理论 机器学习 人工智能 特征(语言学) 预测值 特征向量 预测建模 数据挖掘 数学 统计 医学 数学分析 语言学 化学 哲学 食品科学 内科学
作者
Gordana Ispirova,Tome Eftimov,Sašo Džeroski,Barbara Koroušić Seljak
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121507-121507 被引量:3
标识
DOI:10.1016/j.eswa.2023.121507
摘要

In this study, we estimate the generalization of the performance of previously proposed predictive models for nutrient value prediction across different recipe datasets. For this purpose, we introduce a quantitative indicator that determines the level of generalization of using the developed predictive model for new unseen data not presented in the training process. On a predefined corpus of recipe embeddings from six publicly available recipe datasets (i.e., projecting them in the same meta-feature vector space), we train predictive models on one of the six recipe datasets and test the models on the rest of the datasets. In parallel, we define and calculate generalizability indexes which are numbers that indicate how generalizable a predictive model is i.e., how well will a predictive model learned on one dataset perform on another one not involved in the training. The evaluation results prove the validity of these indexes – their relation with the accuracy of the predictions. Further, we define three sampling techniques for selecting representative data instances that will cover all parts from the feature space uniformly (involving data from all datasets) and further will improve the generalization of a predictive model. We train predictive models with these generalized datasets and test them on instances from the six recipe datasets that are not selected and included in the generalized datasets. The results from the evaluation of these predictive models show improvement compared to the results from the predictive models trained on one recipe dataset and tested on the others separately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Njucd完成签到,获得积分20
1秒前
700w完成签到 ,获得积分0
1秒前
不想做实验完成签到,获得积分10
1秒前
2秒前
jianglan发布了新的文献求助10
2秒前
4秒前
齐小强发布了新的文献求助10
5秒前
快乐小海带完成签到,获得积分10
5秒前
沉默的猫咪完成签到,获得积分20
6秒前
HYQ发布了新的文献求助10
6秒前
雨一直下完成签到,获得积分10
6秒前
6秒前
周文瑶发布了新的文献求助10
7秒前
华仔应助爬不起来采纳,获得10
7秒前
研友_maths完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
Zz发布了新的文献求助10
10秒前
11秒前
大个应助mtt采纳,获得10
11秒前
爆米花应助自觉水绿采纳,获得10
12秒前
12秒前
HYQ完成签到,获得积分10
13秒前
金榕发布了新的文献求助10
13秒前
深情安青应助祝一刀采纳,获得10
13秒前
13秒前
WD完成签到,获得积分10
13秒前
twisyouzi完成签到,获得积分10
15秒前
16秒前
田様应助DJY采纳,获得10
16秒前
16秒前
嗯嗯嗯发布了新的文献求助10
17秒前
核桃应助YONG采纳,获得10
18秒前
Deannn778发布了新的文献求助10
20秒前
鸣笛应助科研通管家采纳,获得30
21秒前
Hello应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4339344
求助须知:如何正确求助?哪些是违规求助? 3848190
关于积分的说明 12017726
捐赠科研通 3489338
什么是DOI,文献DOI怎么找? 1915027
邀请新用户注册赠送积分活动 958008
科研通“疑难数据库(出版商)”最低求助积分说明 858280