Comprehensive energy efficiency optimization algorithm for steel load considering network reconstruction and demand response

计算机科学 需求响应 网格 数学优化 控制重构 峰值需求 最优化问题 负荷转移 工程类 算法 数学 电气工程 几何学 嵌入式系统
作者
Yuxiu Zang,Shunjiang Wang,Weichun Ge,Yaping Li,Jia Cui
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1): 20345-20345 被引量:2
标识
DOI:10.1038/s41598-023-46804-7
摘要

Abstract Industrial loads are usually energy intensive and inefficient. The optimization of energy efficiency management in steel plants is still in the early stage of development. Considering the topology of power grid, it is an urgent problem to improve the operation economy and load side energy efficiency of steel plants. In this paper, a two-level collaborative optimization method is proposed, which takes into account the dynamic reconstruction cost, transmission loss cost, energy cost and demand response benefit. The upper level objective is the optimization of topology in the grid structure to optimize the power loss and dynamic reconstruction costs of the grid. The lower level is the energy cost considering demand response, real time price and dynamic demand response price. Firstly, the mathematical models of stable load, impact load and the steel production line load are built. The key parameters are identified by the Back Propagation neural network algorithm according to the actual production data. Secondly, considering the constraints of grid structure and load operation capacity, the impact of dynamic grid loss and real-time dynamic electricity price on the energy efficiency of the whole grid are analyzed in depth. The optimal operation model considering the dynamic reconfiguration and grid tramission loss of distribution network is built. Taking a steel plant park in Northeast China as an example, it is proved that the optimization model can improve energy efficiency on the load side by optimizing energy consumption and demand response participation time on load side. The energy cost is reduced by 17.77% on the load side, the network loss is reduced by 1.8%, and the operating cost of the power grid is reduced by 26.2%, which has a positive effect on improving energy utilization efficiency, reducing distribution network loss, and improving overall economic efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
CipherSage应助陈凯采纳,获得10
6秒前
CipherSage应助jzt12138采纳,获得10
6秒前
7秒前
帅气善斓应助andrew采纳,获得10
7秒前
8秒前
hchnb1234发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
zha州发布了新的文献求助10
9秒前
可爱的函函应助einspringen采纳,获得10
9秒前
jiujiu完成签到,获得积分10
10秒前
10秒前
可爱多发布了新的文献求助20
11秒前
yang发布了新的文献求助10
13秒前
cugzw完成签到,获得积分10
14秒前
15秒前
15秒前
耳冉完成签到 ,获得积分10
15秒前
俭朴的一曲完成签到,获得积分10
16秒前
研友_VZG7GZ应助敬业乐群采纳,获得10
16秒前
17秒前
qiyun完成签到,获得积分10
17秒前
费1发布了新的文献求助10
17秒前
17秒前
Oreki完成签到,获得积分10
18秒前
团结完成签到 ,获得积分10
18秒前
18秒前
orixero应助宋礼采纳,获得10
19秒前
20秒前
21秒前
22秒前
牛诗悦完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
十里八乡关注了科研通微信公众号
23秒前
辛勤德天完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667