GTFN: GCN and Transformer Fusion Network With Spatial-Spectral Features for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 特征提取 模式识别(心理学) 像素 卷积神经网络 变压器 量子力学 物理 电压
作者
Aitao Yang,Min Li,Yao Ding,Danfeng Hong,Yilong Lv,Yujie He
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:18
标识
DOI:10.1109/tgrs.2023.3314616
摘要

Transformer has been widely used in classification tasks for hyperspectral images (HSI) in recent years. Because it can mine spectral sequence information to establish long-range dependence, its classification performance can be comparable with the convolutional neural network (CNN). However, both CNN and Transformer focus excessively on spatial or spectral domain features, resulting in an insufficient combination of spatial-spectral domain information from HSI for modeling. To solve this problem, we propose a new end-to-end graph convolutional network (GCN) and Transformer fusion network with the spatial-spectral feature extraction (GTFN) in this paper, which combines the strengths of GCN and Transformer in both spatial and spectral domain feature extraction, taking full advantage of the contextual information of classified pixels while establishing remote dependencies in the spectral domain compared with previous approaches. In addition, GTFN uses Follow Patch as an input to the GCN and effectively solves the problem of high model complexity while mining the relationship between pixels. It is worth noting that the spectral attention module is introduced in the process of GCN feature extraction, focusing on the contribution of different spectral bands to the classification. More importantly, to overcome the problem that Transformer is too scattered in the frequency domain feature extraction, a neighborhood convolution module is designed to fuse the local spectral domain features. On Indian Pines, Salinas, and Pavia University datasets, the overall accuracies (OAs) of our GTFN are 94.00%, 96.81%, and 95.14%, respectively. The core code of GTFN is released at https://github.com/1useryang/GTFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clairevox完成签到,获得积分10
1秒前
科研通AI5应助Adzuki0812采纳,获得10
2秒前
3秒前
3秒前
深情安青应助深藏blue采纳,获得10
4秒前
大模型应助闲得追月时采纳,获得30
5秒前
5秒前
5秒前
Willing发布了新的文献求助10
5秒前
香蕉觅云应助孤独灰狼采纳,获得10
5秒前
6秒前
7秒前
胡先生发布了新的文献求助30
8秒前
云上人发布了新的文献求助10
9秒前
sissi完成签到,获得积分10
9秒前
12138的9527完成签到,获得积分10
9秒前
认真雅阳发布了新的文献求助10
10秒前
10秒前
wenlin发布了新的文献求助10
10秒前
10秒前
离言发布了新的文献求助30
12秒前
自信鑫鹏完成签到,获得积分10
14秒前
maoyuni完成签到,获得积分20
14秒前
2025zmx完成签到,获得积分10
14秒前
科研通AI5应助GFY采纳,获得10
15秒前
15秒前
15秒前
15秒前
clairevox发布了新的文献求助10
16秒前
wenlin完成签到,获得积分10
16秒前
刚子发布了新的文献求助10
16秒前
17秒前
李昕123发布了新的文献求助10
18秒前
橙子fy16_发布了新的文献求助50
18秒前
18秒前
19秒前
20秒前
21秒前
21秒前
英俊的铭应助兴奋小丸子采纳,获得10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795227
求助须知:如何正确求助?哪些是违规求助? 3340218
关于积分的说明 10299325
捐赠科研通 3056829
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805274
科研通“疑难数据库(出版商)”最低求助积分说明 762420