Aorta and main pulmonary artery segmentation using stacked U‐Net and localization on non‐contrast‐enhanced computed tomography images

主动脉 降主动脉 升主动脉 医学 分割 食管 放射科 肺静脉 主动脉弓 核医学 解剖 心脏病学 计算机科学 人工智能 烧蚀
作者
Hidenobu Suzuki,Yoshiki Kawata,Keiju Aokage,Yuji Matsumoto,Toshihiko Sugiura,Nobuhiro Tanabe,Yasutaka Nakano,Takaaki Tsuchida,Masahiko Kusumoto,Kazuyoshi Marumo,Masahiro Kaneko,Noboru Niki
出处
期刊:Medical Physics [Wiley]
卷期号:51 (2): 1232-1243 被引量:6
标识
DOI:10.1002/mp.16654
摘要

Abstract Background The contact between the aorta, main pulmonary artery (MPA), main pulmonary vein, vena cava (VC), and esophagus affects segmentation of the aorta and MPA in non‐contrast‐enhanced computed tomography (NCE‐CT) images. Purpose A two‐stage stacked U‐Net and localization of the aorta and MPA were developed for the segmentation of the aorta and MPA in NCE‐CT images. Methods Normal‐dose NCE‐CT images of 24 subjects with chronic thromboembolic pulmonary hypertension (CTEPH) and low‐dose NCE‐CT images of 100 subjects without CTEPH were used in this study. The aorta is in contact with the ascending aorta (AA) and MPA, the AA with the VC, the aortic arch (AR) with the VC and esophagus, and the descending aorta (DA) with the esophagus. These contact surfaces were manually annotated. The contact surfaces were quantified using the contact surface ratio (CSR). Segmentation of the aorta and MPA in NCE‐CT images was performed by localization of the aorta and MPA and a two‐stage stacked U‐Net. Localization was performed by extracting and processing the trachea and main bronchus. The first stage of the stacked U‐Net consisted of a 2D U‐Net, 2D U‐Net with a pre‐trained VGG‐16 encoder, and 2D attention U‐Net. The second stage consisted of a 3D U‐Net with four input channels: the CT volume and three segmentation results of the first stage. The model was trained and tested using 10‐fold cross‐validation. Segmentation of the entire volume was evaluated using the Dice similarity coefficient (DSC). Segmentation of the contact area was also assessed using the mean surface distance (MSD). The statistical analysis of the evaluation underwent a multi‐comparison correction. CTEPH and non‐CTEPH cases were classified based on the vessel diameters measured from the segmented MPA. Results For the noncontact surfaces of AA, the MSD of stacked U‐Net was 0.31 ± 0.10 mm ( p < 0.05) and 0.32 ± 0.13 mm ( p < 0.05) for non‐CTEPH and CTEPH cases, respectively. For contact surfaces with a CSR of 0.4 or greater in AA, the MSD was 0.52 ± 0.23 mm ( p < 0.05), and 0.68 ± 0.29 mm ( p > 0.05) for non‐CTEPH and CTEPH cases, respectively. MSDs were lower than those of 2D and 3D U‐Nets for contact and noncontact surfaces; moreover, MSDs increased slightly with larger CSRs. However, the stacked U‐Net achieved MSDs of approximately 1 pixel for a wide contact surface. The area under the receiver operating characteristic curve for CTEPH and non‐CTEPH classification using the right main pulmonary artery (RMPA) diameter was 0.97 (95% confidence interval [CI]: 0.94–1.00). Conclusions Segmentation of the aorta and MPA on NCE‐CT images were affected by vascular and esophageal contact. The application of stacked U‐Net and localization techniques for non‐CTEPH and CTEPH cases mitigated the impact of contact, suggesting its potential for diagnosing CTEPH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvoov发布了新的文献求助10
刚刚
刚刚
1秒前
认真柠檬发布了新的文献求助10
1秒前
1秒前
1秒前
kamola0807完成签到,获得积分10
1秒前
尼禄完成签到,获得积分10
1秒前
归尘发布了新的文献求助10
2秒前
科目三应助迷路的煎蛋采纳,获得10
2秒前
欣慰巨人发布了新的文献求助10
3秒前
cxqygdn完成签到,获得积分10
3秒前
小太阳发布了新的文献求助10
4秒前
小明发布了新的文献求助10
4秒前
4秒前
yejian发布了新的文献求助30
4秒前
4秒前
苏幕遮发布了新的文献求助10
4秒前
5秒前
大个应助1941667281采纳,获得10
5秒前
5秒前
bhkwxdxy完成签到,获得积分10
5秒前
江湖护卫舰应助洋洋呀采纳,获得10
5秒前
浮游应助迪迪迪迪迪采纳,获得10
6秒前
温酒随行发布了新的文献求助10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
sjhz发布了新的文献求助10
7秒前
科研通AI6应助壮观若南采纳,获得10
7秒前
7秒前
希望天下0贩的0应助与山采纳,获得10
8秒前
传奇3应助qaa2274278941采纳,获得10
8秒前
8秒前
酷波er应助高贵书白采纳,获得10
8秒前
8秒前
8秒前
邓谷云发布了新的文献求助10
9秒前
yejian完成签到,获得积分10
9秒前
我是老大应助愣头青轻采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071804
求助须知:如何正确求助?哪些是违规求助? 4292378
关于积分的说明 13374385
捐赠科研通 4113281
什么是DOI,文献DOI怎么找? 2252316
邀请新用户注册赠送积分活动 1257279
关于科研通互助平台的介绍 1190064