清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multiparametric MRI and Radiomics for the Prediction of HER2-Zero, -Low, and -Positive Breast Cancers

医学 乳腺癌 接收机工作特性 逻辑回归 免疫组织化学 乳房磁振造影 内科学 曲妥珠单抗 乳房成像 相关性 肿瘤科 癌症 放射科 乳腺摄影术 几何学 数学
作者
Toulsie Ramtohul,Lounes Djerroudi,Émilie Lissavalid,Caroline Nhy,Louis Redon,Laura Ikni,Manel Djelouah,Gabrielle Journo,Emmanuelle Menet,Luc Cabel,Caroline Malhaire,A. Tardivon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (2) 被引量:64
标识
DOI:10.1148/radiol.222646
摘要

Background Half of breast cancers exhibit low expression levels of human epidermal growth factor receptor 2 (HER2) and can be targeted by new antibody-drug conjugates. The imaging differences between HER2-zero (immunohistochemistry [IHC] score of 0), HER2-low (IHC score of 1+ or 2+ with negative findings at fluorescence in situ hybridization [FISH]), and HER2-positive (IHC score of 2+ with positive findings at FISH or IHC score of 3+) breast cancers were unknown. Purpose To assess whether multiparametric dynamic contrast-enhanced MRI-based radiomic features can help distinguish HER2 expressions in breast cancer. Materials and Methods This study included women with breast cancer who underwent MRI at two different centers between December 2020 and December 2022. Tumor segmentation and radiomic feature extraction were performed on T2-weighted and dynamic contrast-enhanced T1-weighted images. Unsupervised correlation analysis of reproducible features and least absolute shrinkage and selector operation were used for the selection of features to build a radiomics signature. The area under the receiver operating characteristic curve (AUC) was used to assess the performance of the radiomic signature. Multivariable logistic regression was used to identify independent predictors for distinguishing HER2 expressions in both the training and prospectively acquired external data set. Results The training set included 208 patients from center 1 (mean age, 53 years ± 14 [SD]), and the external test set included 131 patients from center 2 (mean age, 54 years ± 13). In the external test data set, the radiomic signature achieved an AUC of 0.80 (95% CI: 0.71, 0.89) for distinguishing HER2-low and -positive tumors versus HER2-zero tumors and was a significant predictive factor for distinguishing these two groups (odds ratio = 7.6; 95% CI: 2.9, 19.8; P < .001). Among HER2-low or -positive breast cancers, histology type, associated nonmass enhancement, and multiple lesions at MRI had an AUC of 0.77 (95% CI: 0.68, 0.86) in the external test set for the prediction of HER2-positive versus HER2-low cancers. Conclusion The radiomic signature and tumor descriptors from multiparametric breast MRI may predict distinct HER2 expressions of breast cancers with therapeutic implications. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kataoka and Honda in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
jiangqin123完成签到 ,获得积分10
8秒前
甄水瑶发布了新的文献求助30
9秒前
10秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
17秒前
18秒前
23秒前
伏城完成签到 ,获得积分10
24秒前
32秒前
Akim应助甄水瑶采纳,获得10
34秒前
38秒前
38秒前
nanfang完成签到 ,获得积分10
39秒前
43秒前
48秒前
jlwang完成签到,获得积分10
49秒前
fox完成签到,获得积分10
52秒前
56秒前
Qvby3完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
甄水瑶发布了新的文献求助10
1分钟前
souther完成签到,获得积分0
1分钟前
传奇3应助细心的语蓉采纳,获得10
1分钟前
一叶知秋应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
一叶知秋应助科研通管家采纳,获得10
1分钟前
一叶知秋应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
fox发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI5应助甄水瑶采纳,获得30
2分钟前
2分钟前
2分钟前
32429606完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4118494
求助须知:如何正确求助?哪些是违规求助? 3657089
关于积分的说明 11577109
捐赠科研通 3359155
什么是DOI,文献DOI怎么找? 1845571
邀请新用户注册赠送积分活动 910827
科研通“疑难数据库(出版商)”最低求助积分说明 827082