Quality monitoring of injection molding based on TSO-SVM and MOSSA

支持向量机 收缩率 造型(装饰) 体积热力学 过程(计算) 超参数 计算机科学 材料科学 机器学习 复合材料 物理 量子力学 操作系统
作者
Wenjie Ding,Xinping Fan,Yonghuan Guo,Xiangning Lu,Dezhao Wang,Changjing Wang,Xinran Zhang
出处
期刊:Journal of Polymer Engineering [De Gruyter]
卷期号:44 (1): 64-72
标识
DOI:10.1515/polyeng-2023-0168
摘要

Abstract Based on the tuna swarm optimization-based support vector machine (TSO-SVM) and the multi-objective sparrow search algorithm (MOSSA), this paper proposes a multi-objective optimization approach for injection molding of thin-walled plastic components, addressing the issues of warpage deformation and volume shrinkage that compromise molding quality. Firstly, data samples are obtained based on the Box–Behnken experimental design and computer-aided engineering (CAE) simulation. Subsequently, SVM is employed to build a predictive model between the experimental factors and quality objectives. Additionally, the TSO is applied to optimize the hyperparameters of SVM, aiming to enhance its regression performance and prediction accuracy. Finally, the MOSSA is employed for multi-objective optimization, combined with the CRITIC scoring method for decision-making, to obtain the optimal combination of process parameters. The obtained parameters are then validated through simulation in Moldflow software. After optimization, the warpage deformation is reduced to 0.5085 mm, and the volume shrinkage rate is decreased to 7.573 %, representing a significant reduction of 40.9 % and 18.1 %, respectively, compared to the pre-optimized results. The remarkable improvement demonstrates the effectiveness of the method based on TSO-SVM and MOSSA for the efficient monitoring of the injection molding process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助刘勇采纳,获得10
2秒前
bc给ljy的求助进行了留言
4秒前
4秒前
丘比特应助缓慢的藏鸟采纳,获得10
5秒前
6秒前
7秒前
7秒前
8秒前
9秒前
9秒前
9秒前
派小星完成签到,获得积分10
11秒前
11111发布了新的文献求助30
11秒前
LAST发布了新的文献求助10
12秒前
木有完成签到,获得积分10
12秒前
12秒前
13秒前
sindy88发布了新的文献求助10
14秒前
14秒前
15秒前
科研通AI5应助ylq采纳,获得30
16秒前
坤坤发布了新的文献求助10
16秒前
18秒前
20秒前
满怀完成签到,获得积分10
21秒前
坤坤完成签到,获得积分20
21秒前
香蕉觅云应助lynn016采纳,获得10
22秒前
Hollow发布了新的文献求助10
22秒前
22秒前
22秒前
dayueban完成签到,获得积分10
22秒前
LLL发布了新的文献求助10
22秒前
大模型应助月浅采纳,获得10
23秒前
23秒前
问梅发布了新的文献求助10
23秒前
潇洒的海豚完成签到,获得积分20
23秒前
24秒前
24秒前
斯文败类应助韩惜灵采纳,获得10
24秒前
Hello应助云辞忧采纳,获得10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814887
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399091
捐赠科研通 3076489
什么是DOI,文献DOI怎么找? 1689843
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608