已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

One Month Prediction of Pressure Ulcers in Nursing Home Residents with Bayesian Networks

医学 疗养院 贝叶斯概率 贝叶斯网络 护理部 老年学 机器学习 人工智能 计算机科学
作者
Clara Charon,Pierre-Henri Wuillemin,Charlotte Havreng‐Théry,Joël Belmin
出处
期刊:Journal of the American Medical Directors Association [Elsevier BV]
卷期号:25 (6): 104945-104945 被引量:1
标识
DOI:10.1016/j.jamda.2024.01.014
摘要

ObjectivesPressure ulcers (PUs) are a common and avoidable condition among residents of nursing homes, and their consequences are severe. Reliable and simple identification of high-risk residents is a major challenge for prevention. Available tools like the Braden and Norton scale have imperfect predictive performance. The objective is to predict the occurrence of PUs in nursing home residents from electronic health record (EHR) data.DesignLongitudinal retrospective nested case-control study.Setting and ParticipantsEHR database of French nursing homes from 2013 to 2022.MethodsResidents who suffered from PUs were cases and those who did not were controls. For cases, we analyzed the data available in their EHR 1 month before the occurrence of the first PU. For controls, we used available data 1 month before an index date adjusted on the delays of PU onset. We conducted a Bayesian network (BN) analysis, an explainable machine learning method, using 136 input variables of potential medical interest determined with experts. To validate the model, we used scores, features selection, and explainability tools such as Shapley values.ResultsAmong 58,368 residents analyzed, 29% suffered from PUs during their stay. The obtained BN model predicts the occurrence of a PU at a 1-month horizon with a sensitivity of 0.94 (±0.01), a precision of 0.32 (±0.01) and an area under the curve of 0.69 (±0.02). It selects 3 variables: length of stay, delay since last hospitalization, and dependence for transfer. This BN model is suitable and simpler than models provided by other machine learning methods.Conclusions and ImplicationsOne-month prediction for incident PU is possible in nursing home residents from their EHR data. The study paves the way for the development of a predictive tool fueled by routinely collected data that do not require additional work from health care professionals, thereby opening a new preventive strategy for PUs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远志发布了新的文献求助10
1秒前
上官若男应助哇哦采纳,获得10
2秒前
我是老大应助echo小白采纳,获得10
2秒前
Jasper应助天大青年采纳,获得10
7秒前
伶俐的大雁完成签到,获得积分10
9秒前
顾矜应助siiiiixx采纳,获得10
14秒前
bkagyin应助远志采纳,获得10
15秒前
科研通AI5应助观zz采纳,获得20
16秒前
18秒前
20秒前
Zoey完成签到,获得积分10
21秒前
wang完成签到,获得积分10
22秒前
天大青年发布了新的文献求助10
23秒前
Erick完成签到,获得积分10
25秒前
Zoey发布了新的文献求助10
26秒前
木子水告完成签到,获得积分10
27秒前
Chaiyuan完成签到 ,获得积分10
32秒前
34秒前
天大青年完成签到,获得积分10
35秒前
36秒前
Akim应助甜甜的文轩采纳,获得10
42秒前
张杰发布了新的文献求助10
43秒前
二十八画生完成签到,获得积分10
47秒前
50秒前
123完成签到 ,获得积分10
51秒前
shjyang完成签到,获得积分10
52秒前
星辰大海应助clcl采纳,获得10
52秒前
hala安胖胖完成签到,获得积分10
53秒前
1分钟前
东流应助朱一龙采纳,获得100
1分钟前
1分钟前
1分钟前
糟老头完成签到,获得积分10
1分钟前
1分钟前
领导范儿应助糟糕的铁锤采纳,获得30
1分钟前
1分钟前
gardenia完成签到 ,获得积分10
1分钟前
白玫瑰完成签到,获得积分10
1分钟前
fffff发布了新的文献求助10
1分钟前
超级的鼠标完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795430
求助须知:如何正确求助?哪些是违规求助? 3340416
关于积分的说明 10300140
捐赠科研通 3056953
什么是DOI,文献DOI怎么找? 1677332
邀请新用户注册赠送积分活动 805375
科研通“疑难数据库(出版商)”最低求助积分说明 762491