Knowledge distillation on individual vertebrae segmentation exploiting 3D U-Net

计算机科学 分割 蒸馏 人工智能 模式识别(心理学) 计算机视觉 化学 色谱法
作者
Luís Serrador,Francesca Pia Villani,Sara Moccia,Cristina P. Santos
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:113: 102350-102350 被引量:9
标识
DOI:10.1016/j.compmedimag.2024.102350
摘要

Recent advances in medical imaging have highlighted the critical development of algorithms for individual vertebral segmentation on computed tomography (CT) scans. Essential for diagnostic accuracy and treatment planning in orthopaedics, neurosurgery and oncology, these algorithms face challenges in clinical implementation, including integration into healthcare systems. Consequently, our focus lies in exploring the application of knowledge distillation (KD) methods to train shallower networks capable of efficiently segmenting vertebrae in CT scans. This approach aims to reduce segmentation time, enhance suitability for emergency cases, and optimize computational and memory resource efficiency. Building upon prior research in the field, a two-step segmentation approach was employed. Firstly, the spine's location was determined by predicting a heatmap, indicating the probability of each voxel belonging to the spine. Subsequently, an iterative segmentation of vertebrae was performed from the top to the bottom of the CT volume over the located spine, using a memory instance to record the already segmented vertebrae. KD methods were implemented by training a teacher network with performance similar to that found in the literature, and this knowledge was distilled to a shallower network (student). Two KD methods were applied: (1) using the soft outputs of both networks and (2) matching logits. Two publicly available datasets, comprising 319 CT scans from 300 patients and a total of 611 cervical, 2387 thoracic, and 1507 lumbar vertebrae, were used. To ensure dataset balance and robustness, effective data augmentation methods were applied, including cleaning the memory instance to replicate the first vertebra segmentation. The teacher network achieved an average Dice similarity coefficient (DSC) of 88.22% and a Hausdorff distance (HD) of 7.71 mm, showcasing performance similar to other approaches in the literature. Through knowledge distillation from the teacher network, the student network's performance improved, with an average DSC increasing from 75.78% to 84.70% and an HD decreasing from 15.17 mm to 8.08 mm. Compared to other methods, our teacher network exhibited up to 99.09% fewer parameters, 90.02% faster inference time, 88.46% shorter total segmentation time, and 89.36% less associated carbon (CO2) emission rate. Regarding our student network, it featured 75.00% fewer parameters than our teacher, resulting in a 36.15% reduction in inference time, a 33.33% decrease in total segmentation time, and a 42.96% reduction in CO2 emissions. This study marks the first exploration of applying KD to the problem of individual vertebrae segmentation in CT, demonstrating the feasibility of achieving comparable performance to existing methods using smaller neural networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唠叨的天亦完成签到 ,获得积分10
2秒前
guishouyu完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
6秒前
祁乾完成签到 ,获得积分10
13秒前
14秒前
行萱发布了新的文献求助10
21秒前
xiaofan完成签到,获得积分10
23秒前
雁塔完成签到 ,获得积分10
23秒前
科研通AI2S应助Godric147采纳,获得20
23秒前
26秒前
量子星尘发布了新的文献求助10
28秒前
mxtsusan完成签到,获得积分20
30秒前
zzzyq发布了新的文献求助10
31秒前
弄香完成签到,获得积分10
32秒前
35秒前
35秒前
36秒前
Godric147发布了新的文献求助20
40秒前
cctv18应助科研通管家采纳,获得10
42秒前
cctv18应助科研通管家采纳,获得10
42秒前
cctv18应助科研通管家采纳,获得10
42秒前
cctv18应助科研通管家采纳,获得10
42秒前
cctv18应助科研通管家采纳,获得10
42秒前
cctv18应助科研通管家采纳,获得10
42秒前
cctv18应助科研通管家采纳,获得10
42秒前
cctv18应助科研通管家采纳,获得10
42秒前
贝贝应助科研通管家采纳,获得10
42秒前
cctv18应助科研通管家采纳,获得10
42秒前
冰魂应助科研通管家采纳,获得10
42秒前
cctv18应助科研通管家采纳,获得10
42秒前
42秒前
wangxin完成签到,获得积分20
48秒前
量子星尘发布了新的文献求助10
49秒前
fa完成签到,获得积分10
50秒前
土豆晴完成签到 ,获得积分10
52秒前
皮皮完成签到 ,获得积分10
55秒前
OSASACB完成签到 ,获得积分10
57秒前
58秒前
apollo3232完成签到,获得积分10
59秒前
红茸茸羊完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883870
求助须知:如何正确求助?哪些是违规求助? 3426175
关于积分的说明 10747118
捐赠科研通 3150996
什么是DOI,文献DOI怎么找? 1739202
邀请新用户注册赠送积分活动 839633
科研通“疑难数据库(出版商)”最低求助积分说明 784734