Sobol序列
灵敏度(控制系统)
参数化复杂度
表征(材料科学)
瞬态(计算机编程)
反向
磁场
反问题
领域(数学)
数学
条状物
克里金
透视图(图形)
应用数学
算法
人工智能
计算机科学
数学分析
工程类
材料科学
统计
物理
电子工程
几何学
纳米技术
纯数学
操作系统
量子力学
作者
Anastassios Skarlatos,Roberto Miorelli,Christophe Reboud,Frenk Van Den Berg
出处
期刊:Inverse Problems
[IOP Publishing]
日期:2024-02-16
卷期号:40 (4): 045012-045012
被引量:6
标识
DOI:10.1088/1361-6420/ad2a04
摘要
Abstract In this contribution, the magnetic characterization of steel strips is studied using synthetic data of field-gradient transients, which have been produced via the finite integration technique. The material law is described and parameterized using the Jiles–Atherton model. The sensitivity of relevant magnetic indicators with respect to the material parameters is then analyzed using two global methods: Sobol’ indices and δ -sensitivity indices. In order to accelerate the evaluation of these quantities, a fast metamodel is built using machine learning techniques from a simulated dataset. The solution of the inverse problem based on a tailored learning framework is tested for the different proposed identifiers, and their suitability for the magnetic characterization of the material in question is finally discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI