Nitrogen-doped carbon nanofiber loaded MOF-derived NiCo bimetallic nanoparticles accelerate the redox transformation of polysulfide for lithium- sulfur batteries

化学 多硫化物 双金属片 氧化还原 法拉第效率 锂(药物) 硫黄 无机化学 纳米颗粒 电化学 电化学动力学 化学工程 电极 电解质 有机化学 催化作用 物理化学 内分泌学 工程类 医学
作者
Zeping Wang,Chengxin Liu,Yangyang Wang,Shengqiang Zhang,Miao Huang,Jinbo Bai,Hui Wang,Xiaojie Liu
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier BV]
卷期号:959: 118185-118185 被引量:6
标识
DOI:10.1016/j.jelechem.2024.118185
摘要

In the electrochemical study of lithium-sulfur (Li-S) batteries, the slow kinetics of the sulfur reduction reaction (SRR) leading to severe shuttle effect of polysulfides remains a major challenge. Catalysts with bimetallic nanoparticles have higher adsorption affinity for lithium polysulfides and hold great potential in improving reaction kinetics. In this study, a nitrogen-doped carbon nanofiber carrier was prepared using high-voltage electrospinning technology, and through in-situ growth and high-temperature pyrolysis process, the carrier material was uniformly loaded with active sites of NiCo bimetallic nanoparticles derived from Metal-organic framework (MOF), aiming to improve the kinetics of sulfur oxidation and reduction and reduce the severe shuttle effect of soluble polysulfides. At the same time, polymethyl methacrylate was added to adjust the pore structure of the carbon nanofibers to form an ideal independent sulfur cathode porous conductive carbon network for rapid ion transport to prevent Li2S deposition and alleviate the volume change during lithiation/delithiation process. Experimental results show that the synergistic catalytic effect of bimetallic nanoparticles can not only rapidly anchor lithium polysulfides throughout the entire reaction process of Li-S batteries, but also reduce the resistance during the reaction process, accelerating the conversion of lithium polysulfides to Li2S deposition. It demonstrates outstanding electrochemical performance, with a first-cycle discharge specific capacity as high as 1431.7 mAh g−1 at a 0.2 C rate, and a Coulombic efficiency of 96 %. After 500 cycles, its capacity still maintains at 628.5 mAh g−1, with a decay rate of only 0.11 % per cycle. This study provides a feasible insight into the synergistic catalysis of MOF-derived metal nanoparticles, which has important guiding significance and potential impact on the catalysis of Li-S batteries by bimetallic nanoparticles with an independent sulfur cathode structure, and is expected to accelerate the industrialization process of Li-S batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫x莫完成签到 ,获得积分10
1秒前
快乐惜灵完成签到,获得积分10
1秒前
wwww完成签到,获得积分10
1秒前
淡淡猎豹完成签到,获得积分10
1秒前
852应助未相遇的辣条采纳,获得10
2秒前
璐宝完成签到,获得积分10
3秒前
Aiden完成签到,获得积分10
3秒前
gaojing完成签到,获得积分10
3秒前
温言发布了新的文献求助10
4秒前
一叶舟完成签到 ,获得积分10
4秒前
汶南完成签到 ,获得积分10
5秒前
文献高手完成签到 ,获得积分10
5秒前
Akim应助快乐惜灵采纳,获得10
5秒前
sdjtxdy发布了新的文献求助10
6秒前
迷蝴蝶完成签到,获得积分10
6秒前
帅玉玉完成签到,获得积分10
6秒前
落寞太阳发布了新的文献求助10
7秒前
流年完成签到 ,获得积分10
7秒前
马马马完成签到 ,获得积分10
7秒前
隐形的傲易完成签到 ,获得积分10
7秒前
胡大嘴先生完成签到,获得积分10
8秒前
木勿忘完成签到,获得积分10
8秒前
欧欧欧导完成签到,获得积分10
9秒前
负责金毛完成签到,获得积分10
9秒前
温言完成签到,获得积分10
10秒前
LY完成签到,获得积分10
10秒前
一木完成签到,获得积分10
10秒前
狂野乌冬面完成签到 ,获得积分10
10秒前
爱吃饼干的土拨鼠完成签到,获得积分10
11秒前
11秒前
务实的数据线完成签到,获得积分10
11秒前
UUU完成签到 ,获得积分10
12秒前
hugebear完成签到,获得积分10
12秒前
Gladys完成签到,获得积分10
12秒前
工大机械完成签到,获得积分10
12秒前
望望旺仔牛奶完成签到,获得积分10
13秒前
夏xia完成签到,获得积分10
13秒前
聖璕完成签到,获得积分10
14秒前
忆之完成签到,获得积分10
15秒前
在水一方应助上下采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795646
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301472
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677590
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642