Highly reliable and large-scale simulations of promising argyrodite solid-state electrolytes using a machine-learned moment tensor potential

材料科学 离子电导率 离子键合 电解质 范德瓦尔斯力 从头算 快离子导体 化学物理 分子动力学 原子单位 电导率 从头算量子化学方法 离子 计算化学 物理化学 电极 分子 物理 量子力学 化学 有机化学
作者
Ji Hoon Kim,Byeongsun Jun,Yong Jun Jang,Sun Ho Choi,Seong Hyeon Choi,Sung Man Cho,Yong-Gu Kim,Byung‐Hyun Kim,Sang Uck Lee
出处
期刊:Nano Energy [Elsevier BV]
卷期号:124: 109436-109436 被引量:6
标识
DOI:10.1016/j.nanoen.2024.109436
摘要

The high ionic conductivity of argyrodite makes it an attractive candidate for solid-state electrolytes (SSEs) in all-solid-state Li-ion batteries (ASSBs). Although great effort has been devoted to using ab initio molecular dynamics (AIMD) to evaluate ionic conductivity and elucidate the Li-ion diffusion mechanism of argyrodite-based SSEs, limitations in system size, simulation temperatures, and time associated with AIMD make accurate predictions and analysis of Li-ion diffusion challenging. Here, we present a reliable, large-scale computational approach to realistic simulation of SSEs in the bulk and at the grain boundary (GB) based on moment tensor potentials (MTPs) trained at the van der Waals optB88 level of theory. MTPs enable sufficiently large-scale and long-time simulations that reflect all possible configurational disorder of experimental crystal structures and provide accurate ionic conductivities that are close to values measured experimentally in halogenated Li-argyrodite (Li6PS5X [X = Cl, Br, I]). Our simulations show that the vibrational motion of a PS4 polyhedron has a positive effect on ionic conductivity. We also developed an accurate MTP using an active-learning approach to exploring Li-ion diffusion at the GB in polycrystalline SSEs. Simulations of the molecular dynamics of large ∑5100021 (>10,000-atom) GB models reveal that Li-ion accumulation around the GB region retards ionic conductivity and extends into an interior region approximately 20 Å from the GB interface. This work provides a practical approach to realistic large-scale and interfacial GB simulations that are otherwise inaccessible through ab initio calculations by developing accurate machine-learned MTPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助Fafa采纳,获得10
2秒前
5秒前
我是老大应助武雨寒采纳,获得10
6秒前
烟花应助研友_ndDGVn采纳,获得20
7秒前
8秒前
boss发布了新的文献求助10
8秒前
Gypsy完成签到 ,获得积分10
8秒前
9秒前
10秒前
11秒前
12秒前
jingnanlyu完成签到,获得积分10
12秒前
清脆画板完成签到,获得积分10
13秒前
14秒前
斯文败类应助GGBond采纳,获得10
16秒前
16秒前
c1302128340发布了新的文献求助10
16秒前
16秒前
jingnanlyu发布了新的文献求助10
17秒前
孟严青完成签到 ,获得积分10
18秒前
大鼻子发布了新的文献求助10
18秒前
dbq发布了新的文献求助10
19秒前
2568269431发布了新的文献求助10
20秒前
21秒前
22秒前
善学以致用应助柒月小鱼采纳,获得10
23秒前
26秒前
8R60d8应助xiaobai采纳,获得10
27秒前
bear发布了新的文献求助10
27秒前
rare发布了新的文献求助30
29秒前
简单海完成签到,获得积分20
31秒前
31秒前
FashionBoy应助武雨寒采纳,获得10
34秒前
cyanpomelo应助张资阳采纳,获得10
34秒前
萨尔莫斯发布了新的文献求助10
35秒前
思源应助科研通管家采纳,获得10
35秒前
胡诗剑完成签到,获得积分10
35秒前
小马甲应助科研通管家采纳,获得10
36秒前
JamesPei应助科研通管家采纳,获得10
36秒前
高分求助中
Calogero—Moser—Sutherland Systems 666
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800724
求助须知:如何正确求助?哪些是违规求助? 3346204
关于积分的说明 10328503
捐赠科研通 3062675
什么是DOI,文献DOI怎么找? 1681117
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646