Enhancing heart disease prediction using a self-attention-based transformer model

可解释性 计算机科学 人工智能 机器学习 变压器 水准点(测量) 医学诊断 心力衰竭 数据挖掘 医学 内科学 量子力学 物理 病理 电压 地理 大地测量学
作者
Atta Rahman,Yousef Alsenani,Adeel Zafar,Kalim Ullah,Khaled M. Rabie,Thokozani Shongwe
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:25
标识
DOI:10.1038/s41598-024-51184-7
摘要

Abstract Cardiovascular diseases (CVDs) continue to be the leading cause of more than 17 million mortalities worldwide. The early detection of heart failure with high accuracy is crucial for clinical trials and therapy. Patients will be categorized into various types of heart disease based on characteristics like blood pressure, cholesterol levels, heart rate, and other characteristics. With the use of an automatic system, we can provide early diagnoses for those who are prone to heart failure by analyzing their characteristics. In this work, we deploy a novel self-attention-based transformer model, that combines self-attention mechanisms and transformer networks to predict CVD risk. The self-attention layers capture contextual information and generate representations that effectively model complex patterns in the data. Self-attention mechanisms provide interpretability by giving each component of the input sequence a certain amount of attention weight. This includes adjusting the input and output layers, incorporating more layers, and modifying the attention processes to collect relevant information. This also makes it possible for physicians to comprehend which features of the data contributed to the model's predictions. The proposed model is tested on the Cleveland dataset, a benchmark dataset of the University of California Irvine (UCI) machine learning (ML) repository. Comparing the proposed model to several baseline approaches, we achieved the highest accuracy of 96.51%. Furthermore, the outcomes of our experiments demonstrate that the prediction rate of our model is higher than that of other cutting-edge approaches used for heart disease prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sea_U应助王安琪采纳,获得20
1秒前
Chen完成签到,获得积分10
2秒前
2秒前
2秒前
L-g-b完成签到,获得积分10
3秒前
eyrefa完成签到 ,获得积分10
3秒前
123完成签到,获得积分10
3秒前
lcx完成签到,获得积分10
4秒前
wy18567337203发布了新的文献求助10
4秒前
5秒前
隐形曼青应助专注语堂采纳,获得10
5秒前
Wwyy完成签到,获得积分10
7秒前
斯寜应助瞌瞌采纳,获得10
7秒前
科目三应助霁星河采纳,获得10
9秒前
zz发布了新的文献求助10
9秒前
10秒前
阔达幼珊完成签到,获得积分10
11秒前
11秒前
内向绿竹应助落寞的妖妖采纳,获得10
11秒前
李一诺完成签到 ,获得积分10
12秒前
13秒前
小李完成签到,获得积分20
14秒前
manan发布了新的文献求助10
14秒前
天天快乐应助wang5945采纳,获得10
15秒前
tamo发布了新的文献求助10
16秒前
科目三应助ZZZZZ采纳,获得10
17秒前
科研通AI5应助小旺仔采纳,获得10
17秒前
wwss发布了新的文献求助10
18秒前
路上的小黄花完成签到 ,获得积分10
19秒前
19秒前
19秒前
20秒前
南橘完成签到 ,获得积分10
21秒前
wwss完成签到,获得积分10
22秒前
沉静的元容完成签到,获得积分10
22秒前
zz完成签到,获得积分20
24秒前
11111发布了新的文献求助30
24秒前
彭于晏完成签到,获得积分0
24秒前
小薇丸子发布了新的文献求助10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742