Machine Learning Enhanced Prediction of Permittivity of Spinel Microwave Dielectric Ceramics Compared to Traditional C-M Calculation

尖晶石 均方误差 材料科学 介电常数 梯度升压 电介质 微波食品加热 陶瓷 人工智能 特征(语言学) 机器学习 Boosting(机器学习) 计算机科学 算法 数学 统计 光电子学 电信 复合材料 冶金 随机森林 哲学 语言学
作者
Xiao-Bin Liu,Chang Su,Qiuxia Huang,Shenghui Yang,Lei Zhang,Xiaolan Xie,Huanfu Zhou
出处
期刊:Modelling and Simulation in Materials Science and Engineering [IOP Publishing]
被引量:3
标识
DOI:10.1088/1361-651x/ad1f46
摘要

Abstract Microwave dielectric ceramic (MWDC) is crucial in advancing the development of 5G technology and the communication field. The prediction or calculation of its properties is of great significance for accelerating the design and development of MWDCs. Therefore, the prediction of permittivity of spinel MWDCs based on machine learning was investigated in this work. Firstly, we collected 280 single-phase spinel MWDC entries and constructed feature engineering, which includes feature generation and feature selection (five dominant features, including Mpo, Dar, Mmbe, Aose and Dgnve, were selected from 208 generated features). Next, seven commonly used algorithms were utilized during the training process of machine learning models. The eXtreme Gradient Boosting (XGBoost) model shows the best performance with R-squared (R2) of 0.9095, Mean Absolute Error (MAE) of 1.02 and Root Mean Square Error (RMSE) of 1.96. Furthermore, all the machine learning models show enhanced prediction (calculation accuracy) of the permittivity of spinel MWDCs compared to the traditional Clausius-Mossotti (C-M) equation, which can provide a guide for the design and development of spinel MWDCs applied for wireless communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
renka发布了新的文献求助10
刚刚
1秒前
3秒前
香蕉觅云应助夏佳泽采纳,获得10
5秒前
yyzhou应助墨竹青浅采纳,获得20
6秒前
6秒前
余泽发布了新的文献求助10
7秒前
123完成签到,获得积分10
8秒前
moon完成签到,获得积分10
8秒前
充电宝应助gogo采纳,获得30
9秒前
msl完成签到,获得积分10
9秒前
11秒前
隐形曼青应助栾栾采纳,获得10
12秒前
ohh发布了新的文献求助10
12秒前
李洁完成签到,获得积分10
12秒前
tenacity发布了新的文献求助10
14秒前
李子敬完成签到,获得积分10
15秒前
深的浅发布了新的文献求助30
16秒前
17秒前
17秒前
renka完成签到,获得积分20
17秒前
17秒前
李健的小迷弟应助xx采纳,获得10
18秒前
肖亚鑫完成签到,获得积分10
19秒前
20秒前
21秒前
天天快乐应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
23秒前
夏佳泽发布了新的文献求助10
24秒前
YaoHui发布了新的文献求助10
24秒前
酷波er应助沉静的曼荷采纳,获得10
26秒前
积极问晴完成签到,获得积分10
29秒前
29秒前
刘雪晴完成签到 ,获得积分10
30秒前
虚幻尔丝发布了新的文献求助10
32秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838395
求助须知:如何正确求助?哪些是违规求助? 3380695
关于积分的说明 10515576
捐赠科研通 3100341
什么是DOI,文献DOI怎么找? 1707439
邀请新用户注册赠送积分活动 821718
科研通“疑难数据库(出版商)”最低求助积分说明 772907