Advances in modification of Bi2MoO6 and its photocatalysis: A review

光催化 异质结 兴奋剂 半导体 带隙 载流子 材料科学 光化学 光电子学 纳米技术 化学工程 化学 生物化学 催化作用 工程类
作者
Mingjie Lyu,Changmin Wang,Youzhuang Rong,Jinwei Wei,Yongkang Yang,Yunyan Liu,Gongxiang Wei,Qian Zhang,Cao Wang,Junshan Xiu
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:982: 173759-173759 被引量:27
标识
DOI:10.1016/j.jallcom.2024.173759
摘要

Nowadays, photocatalytic semiconductor technology has become a research hotspot because of its outstanding advantages in solving energy and environment problems. Among the numerous photocatalysts, Bi2MoO6 (BMO), as a member of Aurivillius family, with the advantages of low cost, clean and efficient, adjustable band gap of 2.5–2.8 eV, visible light response, etc., shows great promise in the degradation of water pollutants, air purification, bacterial inhibition, photolysis of water, carbon dioxide reduction and nitrogen fixation. However, due to the weak absorption of visible light, the slow migration rate of photogenerated carriers, the easy coincidence of electron hole pairs and the low quantum yield, the development of single BMO has been greatly limited. Fortunately, it still has a large space for modification and exploration of BMO to enhance its photocatalytic performance. At present, there are many modification methods to improve the photocatalytic activity of BMO. The construction of heterojunction is beneficial to improving the light absorption and charge transfer efficiency. The introduction of oxygen vacancies can adjust the band gap of BMO and provide more active sites for the photocatalytic. Elemental doping is helpful for introducing impurity energy levels and improving the intrinsic activity of BMO. This review provides a comprehensive summary of BMO modification methods. Firstly, the review summarized the structural characteristics and band structure of BMO. Then, three highly favored strategies of modification BMO were discussed, including heterojunction construction, oxygen vacancy construction and element doping. Finally, the potential applications and unsolved problems of BMO are presented for further study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小宝爸爸完成签到,获得积分10
刚刚
刚刚
寒冷阁发布了新的文献求助10
1秒前
小马甲应助ppsweek采纳,获得10
2秒前
负责乐安发布了新的文献求助10
2秒前
糕手发布了新的文献求助10
2秒前
Maestro_S应助lyh采纳,获得10
3秒前
3秒前
小宝爸爸发布了新的文献求助10
3秒前
英俊的铭应助肉沫鸭采纳,获得10
3秒前
KINGAZX发布了新的文献求助10
4秒前
煞笔导去死啊完成签到,获得积分10
6秒前
albertxin完成签到,获得积分10
6秒前
tc应助Fei采纳,获得10
6秒前
7秒前
小胖完成签到,获得积分20
7秒前
JamesPei应助刘旭阳采纳,获得10
8秒前
albertxin发布了新的文献求助10
9秒前
8R60d8应助火火采纳,获得10
10秒前
11秒前
笨笨金毛发布了新的文献求助10
13秒前
13秒前
小周发布了新的文献求助50
14秒前
14秒前
飲啖茶应助一见喜采纳,获得80
15秒前
我是老大应助豆豆采纳,获得10
15秒前
褪山海发布了新的文献求助10
15秒前
Gavin发布了新的文献求助10
16秒前
Slowly发布了新的文献求助10
16秒前
英俊寻真发布了新的文献求助10
17秒前
隐形曼青应助温柔沛槐采纳,获得10
17秒前
18秒前
Melody完成签到,获得积分10
18秒前
刘雪松完成签到,获得积分10
19秒前
我是老大应助Cambridge采纳,获得10
20秒前
褪山海完成签到,获得积分10
21秒前
pb完成签到,获得积分10
21秒前
21秒前
Eco发布了新的文献求助10
22秒前
dyc238100完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4466977
求助须知:如何正确求助?哪些是违规求助? 3928473
关于积分的说明 12190314
捐赠科研通 3581787
什么是DOI,文献DOI怎么找? 1968281
邀请新用户注册赠送积分活动 1006673
科研通“疑难数据库(出版商)”最低求助积分说明 900815