Mutually communicated model based on multi‐parametric MRI for automated segmentation and classification of prostate cancer

分割 计算机科学 人工智能 模式识别(心理学) 前列腺癌 基本事实 深度学习 医学 癌症 内科学
作者
Kewen Liu,Piqiang Li,Mārtiņš Otikovs,Xinzhou Ning,Liyang Xia,Xiangyu Wang,Lian Yang,Feng Pan,Zhi Zhang,Guangyao Wu,Han Xie,Qingjia Bao,Xin Zhou,Chaoyang Liu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (6): 3445-3458 被引量:3
标识
DOI:10.1002/mp.16343
摘要

Multiparametric magnetic resonance imaging (mp-MRI) is introduced and established as a noninvasive alternative for prostate cancer (PCa) detection and characterization.To develop and evaluate a mutually communicated deep learning segmentation and classification network (MC-DSCN) based on mp-MRI for prostate segmentation and PCa diagnosis.The proposed MC-DSCN can transfer mutual information between segmentation and classification components and facilitate each other in a bootstrapping way. For classification task, the MC-DSCN can transfer the masks produced by the coarse segmentation component to the classification component to exclude irrelevant regions and facilitate classification. For segmentation task, this model can transfer the high-quality localization information learned by the classification component to the fine segmentation component to mitigate the impact of inaccurate localization on segmentation results. Consecutive MRI exams of patients were retrospectively collected from two medical centers (referred to as center A and B). Two experienced radiologists segmented the prostate regions, and the ground truth of the classification refers to the prostate biopsy results. MC-DSCN was designed, trained, and validated using different combinations of distinct MRI sequences as input (e.g., T2-weighted and apparent diffusion coefficient) and the effect of different architectures on the network's performance was tested and discussed. Data from center A were used for training, validation, and internal testing, while another center's data were used for external testing. The statistical analysis is performed to evaluate the performance of the MC-DSCN. The DeLong test and paired t-test were used to assess the performance of classification and segmentation, respectively.In total, 134 patients were included. The proposed MC-DSCN outperforms the networks that were designed solely for segmentation or classification. Regarding the segmentation task, the classification localization information helped to improve the IOU in center A: from 84.5% to 87.8% (p < 0.01) and in center B: from 83.8% to 87.1% (p < 0.01), while the area under curve (AUC) of PCa classification was improved in center A: from 0.946 to 0.991 (p < 0.02) and in center B: from 0.926 to 0.955 (p < 0.01) as a result of the additional information provided by the prostate segmentation.The proposed architecture could effectively transfer mutual information between segmentation and classification components and facilitate each other in a bootstrapping way, thus outperforming the networks designed to perform only one task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
如风完成签到,获得积分10
4秒前
9秒前
可靠面包发布了新的文献求助10
10秒前
罗明明完成签到 ,获得积分10
12秒前
传统的萝发布了新的文献求助10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
冰魂应助科研通管家采纳,获得10
14秒前
安紊完成签到,获得积分10
14秒前
田様应助科研通管家采纳,获得10
14秒前
14秒前
wanci应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
开心元霜完成签到 ,获得积分10
15秒前
16秒前
18秒前
虚心的幻巧完成签到,获得积分10
18秒前
星辰大海应助虚心的幻巧采纳,获得10
22秒前
KaK发布了新的文献求助10
24秒前
大个应助YIFEI采纳,获得10
25秒前
zhang2001完成签到,获得积分10
26秒前
无聊的纸飞机完成签到,获得积分10
26秒前
苹果果汁完成签到,获得积分10
27秒前
fsznc完成签到 ,获得积分0
27秒前
29秒前
科研通AI2S应助晓雯采纳,获得10
29秒前
催化剂发布了新的文献求助10
33秒前
小二郎应助可靠面包采纳,获得10
36秒前
wanci应助一北采纳,获得10
36秒前
所所应助KaK采纳,获得10
37秒前
怡然的嫣然完成签到,获得积分10
42秒前
43秒前
43秒前
44秒前
cmd完成签到,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778404
求助须知:如何正确求助?哪些是违规求助? 3324131
关于积分的说明 10217172
捐赠科研通 3039355
什么是DOI,文献DOI怎么找? 1667977
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385