Feature-Based Magnitude Estimates for Small Earthquakes in the Yellowstone Region

震级(天文学) 特征(语言学) 地质学 地震学 地震震级 几何学 数学 物理 哲学 天文 语言学 缩放比例
作者
Alysha D. Armstrong,Ben Baker,Keith D. Koper
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
标识
DOI:10.1785/0120240240
摘要

ABSTRACT Accurately computing the magnitude of small earthquakes during periods of high seismicity rates can be a challenging problem. Here, we introduce a machine learning method which uses features derived from the waveforms of individual phase arrivals and event source parameters to predict the local magnitude (ML) of earthquakes recorded by the Yellowstone seismic network. Our approach works for events with small temporal separation, does not require three-component broadband stations, and produces magnitudes that are consistent with the existing Yellowstone earthquake catalog. We train one support vector machine (SVM) per station–phase pair, resulting in 34 models using P features and 18 models using S features. Producing a model for each station is a straightforward approach to ensure the SVMs learn individual station corrections. In addition, we can easily interrogate, update, and add individual station models going forward. For each station–phase pair, we introduce a recursive feature elimination (RFE) algorithm that simplifies and slightly improves the overall predictive performance of the models. For P and S features, our RFE algorithm reduces 45 potential features to a set of seven common features that work well for nearly all models. In addition, our RFE algorithm limits selection bias and can be used for different monitoring regions, regression algorithms, magnitude types, and features. Using a simple network average of the magnitude predictions of each station model, we achieve excellent ML prediction (R2∼0.95) for two distinct testing sets in the Yellowstone region. Overall, our approach produces accurate ML estimates in the magnitude range of ∼0–3.5 and increases the number of stations available to compute ML in the Yellowstone region from 14 to 34, lowering the variance of ML estimates. With our approach, we can efficiently compute ML for swarm events and significantly lower the ML magnitude of completeness in the region.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助张婧莹采纳,获得10
2秒前
2秒前
斯文败类应助冷静的奇迹采纳,获得10
2秒前
尊敬的誉发布了新的文献求助10
2秒前
星辰大海应助坚强幼晴采纳,获得10
3秒前
林风完成签到,获得积分10
3秒前
小米发布了新的文献求助50
3秒前
小王发布了新的文献求助10
3秒前
4秒前
搜集达人应助lvben采纳,获得10
4秒前
希望天下0贩的0应助xyyt采纳,获得10
4秒前
冷艳的酸奶完成签到,获得积分10
5秒前
6秒前
二七完成签到 ,获得积分10
6秒前
7秒前
jia发布了新的文献求助10
7秒前
8秒前
8秒前
10秒前
11秒前
gyes完成签到 ,获得积分20
11秒前
李lll发布了新的文献求助10
11秒前
Chaos发布了新的文献求助10
11秒前
13秒前
13秒前
石翎发布了新的文献求助10
14秒前
14秒前
lvben发布了新的文献求助10
16秒前
所所应助相金鹏采纳,获得10
16秒前
fengfengman完成签到,获得积分10
16秒前
uone完成签到,获得积分10
16秒前
坚强幼晴发布了新的文献求助10
16秒前
111关闭了111文献求助
17秒前
17秒前
Lucas应助李lll采纳,获得10
18秒前
科目三应助xsw采纳,获得10
18秒前
咻咻完成签到,获得积分10
18秒前
Raphael Zhang发布了新的文献求助10
19秒前
搜集达人应助lynn采纳,获得10
19秒前
Jelly完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320015
求助须知:如何正确求助?哪些是违规求助? 4461987
关于积分的说明 13885224
捐赠科研通 4352699
什么是DOI,文献DOI怎么找? 2390804
邀请新用户注册赠送积分活动 1384435
关于科研通互助平台的介绍 1354258