亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-driven synthetic data generation for accelerating hepatology research: A study of the United Network for Organ Sharing (UNOS) database

器官共享联合网络 肝病学 复制 医学 数据共享 数据库 计算机科学 合成数据 内科学 肝移植 数据挖掘 统计 人工智能 移植 数学 病理 替代医学
作者
Joseph Ahn,Yung‐Kyun Noh,Mingzhao Hu,Xiaotong Shen,Douglas A. Simonetto,Patrick S. Kamath,Rohit S. Loomba,Vijay H. Shah
出处
期刊:Hepatology [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/hep.0000000000001299
摘要

Background and Aims: Clinical hepatology research often faces limited data availability, underrepresentation of minority groups, and complex data-sharing regulations. Synthetic data—artificially generated patient records designed to mirror real-world distributions— offers a potential solution. We hypothesized that diffusion models, a state-of-the-art generative technique, could produce synthetic liver transplant waitlist data from the United Network for Organ Sharing (UNOS) database that maintains statistical fidelity, replicates clinical correlations and survival patterns, and ensures robust privacy protection. Methods: Diffusion models were used to generate synthetic patient cohorts mirroring the UNOS liver transplant waitlist database between years 2019 and 2023. Statistical fidelity was assessed using Maximum Mean Discrepancy (MMD) and Wasserstein distance, correlation analysis, and variable-level metrics. Clinical utility was evaluated by comparing transplant-free survival via Kaplan-Meier curves and the MELD score performance. Privacy was quantified using the Distance to Closest Record (DCR) and attribute disclosure risk assessments. Results: The synthetic dataset was nearly indistinguishable from the original dataset (MMD=0.002, standardized Wasserstein distance<1.0), preserving clinically relevant correlations and survival patterns as evidenced by similar median survival times (110 vs. 101 days) and 5-year survival rates (22.2% vs. 22.8%). MELD-based 90-day mortality prediction was maintained (original AUC=0.839 vs. synthetic AUC=0.844). Privacy metrics indicated no identifiable patient matches, and mean DCR values ensured that synthetic individuals were not direct replicas of real patients. Conclusion: AI-generated synthetic data derived from diffusion models can faithfully replicate complex hepatology datasets, maintain key clinical signals, and ensure strong privacy safeguards. This approach can help address data scarcity, enhance model generalizability, foster multi-institutional collaboration, and accelerate progress in hepatology research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nina发布了新的文献求助10
2秒前
小羊完成签到,获得积分10
13秒前
开心初阳发布了新的文献求助10
14秒前
潔思米完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助30
22秒前
37秒前
58秒前
火星上的幻梦完成签到,获得积分10
1分钟前
华仔应助庾稀采纳,获得10
1分钟前
李爱国应助火星上的幻梦采纳,获得10
1分钟前
1分钟前
cen发布了新的文献求助100
1分钟前
1分钟前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
1356发布了新的文献求助10
1分钟前
豆豆完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
青衫完成签到 ,获得积分10
1分钟前
阿呆发布了新的文献求助10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Epiphany发布了新的文献求助10
2分钟前
1356完成签到 ,获得积分10
2分钟前
Epiphany完成签到 ,获得积分10
2分钟前
2分钟前
香蕉觅云应助多情的鸭子采纳,获得10
2分钟前
2分钟前
2分钟前
彭于晏应助大聪明采纳,获得10
3分钟前
3分钟前
3分钟前
大聪明发布了新的文献求助10
3分钟前
大聪明完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270008
求助须知:如何正确求助?哪些是违规求助? 3800578
关于积分的说明 11910760
捐赠科研通 3447500
什么是DOI,文献DOI怎么找? 1890969
邀请新用户注册赠送积分活动 941722
科研通“疑难数据库(出版商)”最低求助积分说明 845807