Two‐step beam geometry optimization for volumetric modulated arc therapy gantry angles in breast treatments

模拟退火 计算机科学 预处理器 人工智能 医学影像学 锥束ct 算法 数学 核医学 计算机视觉 几何学 医学 计算机断层摄影术 外科
作者
Mikko Hakala,Luca Cozzi,Elena Czeizler
出处
期刊:Medical Physics [Wiley]
卷期号:52 (6): 4984-4995
标识
DOI:10.1002/mp.17788
摘要

Abstract Background In partial arc volumetric modulated arc therapy (VMAT) for treating breast cancer, setting up the limiting gantry positions of the treatment machine is a nontrivial yet repetitive and time‐consuming task during planning. Templatized solutions exist but may not provide adequate plan quality. Purpose We have developed a two‐step beam geometry optimization (2SBGO) method to set up in an automated manner the VMAT start/stop gantry angles and avoidance sector (AvS) angle limits for breast treatments. We compare our preliminary results of 2SBGO to manually created plans. Methods In the first step of the method (based on patient geometry), the initial angles are obtained either from a template, from machine‐learning (ML) predictions or manually. A search range around the initial positions is specified for each angle. In the second step (refinement using dosimetric criteria), the parameters are optimized using generalized simulated annealing (GSA). As objective function for GSA, we used the optimizer cost. We tested the method for deep inspiration breath hold and free breathing patients for left‐ and right‐sided breast treatments. As ML models, we trained convolutional neural networks to predict the angles (start/stop angles for both the partial arc and the avoidance sector limits). The training set size was up to 86 patients, the validation set size was fixed to six patients and the test set size to six patients. The initial input before preprocessing was in DICOM format (RT plan and structure files and CT images). The rationale for using ML as first step is to learn from data the ways the beam angles are set and evaluate how good the initial ML solution would be for the final plan quality. Results We showed that for all the test patients, the 2SBGO leads to plans that are of a comparable dosimetric quality compared with manual plans while eliminating the complex and time‐consuming beam geometry (BG) set‐up step. Additionally, with the optimization function we used in our approach the ipsilateral lung doses in right‐sided treatments are reduced compared with plans with manual angle selection. The ML models were shown to be most useful in a clinical workflow when integrated in the full 2SBGO scheme. The ML models themselves, before the second optimization step, predicted the medial angle within accuracy 3.6° ± 2.6° (mean ± SD) and the AvS limiting values within 10.8° ± 8.3°. The Wilcoxon paired signed‐rank test indicated that there were no statistically significant differences between the distributions of ML predictions and manual choices. Conclusions We can obtain in an automatic fashion clinically acceptable breast treatment plans, dosimetrically comparable with the manual ones, by combining an initial BG set‐up with a dosimetric refinement step for the beam angles. The initial ML‐based plans are a useful starting point while they need further refining which the dosimetric fine‐tuning provides. The work paves the way to the automation of the BG setup that has the potential for considerable savings of planner's time, and a decrease in the variation of the quality of the plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eureka完成签到,获得积分10
1秒前
2秒前
熊风完成签到,获得积分20
2秒前
2秒前
Gino完成签到,获得积分0
3秒前
FILPPED完成签到,获得积分10
3秒前
oo完成签到,获得积分10
3秒前
甘博完成签到,获得积分10
3秒前
110o发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
热心市民远完成签到,获得积分10
4秒前
5秒前
cc完成签到,获得积分20
5秒前
Stamina678完成签到,获得积分10
6秒前
7秒前
a.........发布了新的文献求助10
8秒前
淡然的芷荷完成签到 ,获得积分10
8秒前
d7完成签到,获得积分10
8秒前
9秒前
忧郁子骞完成签到,获得积分10
9秒前
Ava应助苗条的奇迹采纳,获得10
9秒前
KKWeng完成签到,获得积分10
10秒前
10秒前
陈进完成签到,获得积分10
11秒前
红宝石设计局完成签到,获得积分10
11秒前
所所应助goodc采纳,获得30
11秒前
lyl完成签到,获得积分10
12秒前
www完成签到 ,获得积分10
12秒前
科研通AI6应助渡劫采纳,获得10
12秒前
12秒前
皛鱼完成签到,获得积分10
13秒前
今后应助Alven采纳,获得10
13秒前
ghhhn完成签到,获得积分10
13秒前
科研通AI6应助acuter采纳,获得10
13秒前
orixero应助岚婘采纳,获得10
14秒前
14秒前
shuangshuang完成签到,获得积分10
15秒前
Owen应助机灵鬼采纳,获得10
15秒前
李小二完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419002
求助须知:如何正确求助?哪些是违规求助? 4534519
关于积分的说明 14144696
捐赠科研通 4450840
什么是DOI,文献DOI怎么找? 2441437
邀请新用户注册赠送积分活动 1433092
关于科研通互助平台的介绍 1410503