Prediction of adsorption energies of CmHnOp (m ≤ 2, n ≤ 6, p ≤ 2) on transition metals and alloys with machine learning methods

吸附 极限学习机 集成学习 支持向量机 感知器 梯度升压 化学 随机森林 Boosting(机器学习) 特征选择 线性回归 人工智能 机器学习 计算机科学 数学 人工神经网络 物理化学
作者
Hong Zhu,Hui Guo,Zhihui Liu,Zhao‐Xu Chen
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:162 (13)
标识
DOI:10.1063/5.0256411
摘要

Metal-based catalysts are widely used in many kinds of reactions, including the hydrogenation of CO2 to alcohols. Adsorption energies of key intermediates have often been used as descriptors in high-throughput catalyst screening. However, establishing machine learning models to accurately predict adsorption energies of widely spanned species is still challenging. In the present article, we explored the predictive power of sure independence screening and sparsifying operator (SISSO), multilayer perceptron regression (MLPR), random forest regression (RFR), kernel ridge regression (KRR), support vector regression (SVR), eXtreme Gradient Boosting (XGBoost), and 20 ensemble machine learning (ML) methods for adsorption energies of 57 species involved in CO2 hydrogenation to ethanol using surface features, adsorbate features, and adsorption site features. The results show that SISSO and the five base ML methods cannot furnish models with the maximum absolute error (MAX) comparable to DFT errors. On the other hand, the MAX of most two-component and three-component ensemble ML methods is less than 0.3 eV, and the KRR+MLPR+XGBoost ensemble ML model performs the best, with the mean absolute error being 0.03 eV and MAX of only 0.17 eV. Feature importance analysis reveals that the condensed local softness is the most important feature, and there are linear relations between the condensed local softness and adsorption energies of 10 C1 species on all considered surfaces. The present work shows that ensemble ML methods outperform the base ML methods for predicting adsorption energies of widely ranged species with satisfactory accuracy and deserve further studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣雅绿发布了新的文献求助10
刚刚
Akim应助fengmian采纳,获得10
刚刚
刘胖胖完成签到,获得积分10
刚刚
滴滴滴发布了新的文献求助10
1秒前
像与完成签到,获得积分10
1秒前
1秒前
.元柏应助一个千年猪妖采纳,获得10
1秒前
2秒前
踏雪无痕发布了新的文献求助10
2秒前
2秒前
深情安青应助元半仙采纳,获得10
3秒前
3秒前
3秒前
神勇若雁发布了新的文献求助10
4秒前
4秒前
一一完成签到,获得积分0
4秒前
李健的小迷弟应助顺心凡采纳,获得10
4秒前
小王完成签到,获得积分10
5秒前
Noah发布了新的文献求助10
6秒前
6秒前
儒雅白莲关注了科研通微信公众号
7秒前
烟花应助哭泣雅绿采纳,获得10
7秒前
像与发布了新的文献求助10
7秒前
小蘑菇应助淡淡的雪采纳,获得10
9秒前
酷酷菲音发布了新的文献求助10
9秒前
10秒前
温拟发布了新的文献求助10
10秒前
Lucas应助深情白风采纳,获得10
10秒前
江蓠完成签到,获得积分10
11秒前
田様应助学术laji采纳,获得10
11秒前
fengmian发布了新的文献求助10
12秒前
LaTeXer应助美好斓采纳,获得30
13秒前
13秒前
orixero应助欣喜战斗机采纳,获得10
13秒前
爆米花应助买双球鞋采纳,获得10
14秒前
上官若男应助和谐幻柏采纳,获得10
14秒前
BiuBiuBiu完成签到 ,获得积分10
15秒前
15秒前
CC学习完成签到 ,获得积分10
15秒前
M1完成签到,获得积分10
16秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799773
求助须知:如何正确求助?哪些是违规求助? 3345093
关于积分的说明 10323514
捐赠科研通 3061617
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807090
科研通“疑难数据库(出版商)”最低求助积分说明 763462