Liquid Biopsy in Metastatic Breast Cancer: Path to Personalized Medicine

液体活检 循环肿瘤细胞 医学 乳腺癌 肿瘤科 内科学 个性化医疗 循环肿瘤DNA 转移性乳腺癌 活检 癌症 精密医学 疾病 转移 病理 生物信息学 生物
作者
Jan‐Philipp Cieslik,Bianca Behrens,Maggie Banys‐Paluchowski,Maximilian Pruss,Melissa Neubacher,Eugen Ruckhäberle,Hans Neubauer,Tanja Fehm,Natalia Krawczyk
出处
期刊:Oncology Research and Treatment [Karger Publishers]
卷期号:: 1-25
标识
DOI:10.1159/000545643
摘要

Background: The detection of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in breast cancer has seen significant progress over the last two decades. These blood-based biomarkers offer a minimally invasive alternative to traditional methods for assessing disease progression and monitoring treatment response, with the potential to transform breast cancer management. Summary: CTCs and ctDNA have emerged as valuable tools for prognosis and treatment guidance in breast cancer. Studies have shown that CTC count correlates with survival and changes in CTC levels can predict clinical outcomes (STIC CTC, DETECT III). Additionally, the molecular characterization of CTCs can help guide therapy (DETECT III). ctDNA, while also predictive of survival (BioItaLEE), provides further utility in identifying treatment failure (PADA-1, PALOMA III) and functions as a real-time tumor biopsy (plasmaMATCH, MONALEESA). Despite these promising advances, challenges remain, including the rarity of CTCs and the need for standardization in ctDNA detection methods. Key Messages: CTC and ctDNA detection has improved significantly and holds the potential for less invasive breast cancer management. CTCs are associated with survival outcomes and treatment guidance, while ctDNA is helpful in predicting treatment failure and can serve as a dynamic tumor biopsy. Ongoing research is needed to address the challenges of CTC rarity and variability in ctDNA detection methods for widespread clinical use.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆果发布了新的文献求助10
刚刚
负责斑马发布了新的文献求助10
刚刚
刚刚
李健应助zhaoh采纳,获得10
刚刚
彭于晏应助卿卿采纳,获得10
刚刚
meili完成签到,获得积分10
1秒前
桐桐应助Rain采纳,获得10
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得150
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
许甜甜鸭应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
zzznznnn发布了新的文献求助10
2秒前
城南饭饭发布了新的文献求助10
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
Minh23完成签到,获得积分10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
3秒前
于浩完成签到,获得积分10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
Owen应助Eason小川采纳,获得10
3秒前
大模型应助不爱喝可乐采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
白衣修身发布了新的文献求助10
3秒前
超世完成签到,获得积分10
3秒前
Hey发布了新的文献求助10
3秒前
慕青应助微醺岛屿采纳,获得10
4秒前
枫华完成签到 ,获得积分10
4秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834484
求助须知:如何正确求助?哪些是违规求助? 3376988
关于积分的说明 10496011
捐赠科研通 3096514
什么是DOI,文献DOI怎么找? 1704953
邀请新用户注册赠送积分活动 820381
科研通“疑难数据库(出版商)”最低求助积分说明 772011