FECI-RTDETR a Lightweight Unmanned Aerial Vehicle Infrared Small Target Detector Algorithm Based on RT-DETR

探测器 计算机科学 遥感 算法 红外线的 人工智能 计算机视觉 物理 电信 光学 地理
作者
R. Xue,Shih-Chun Hua,H. S. Xu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:13: 9578-9591 被引量:4
标识
DOI:10.1109/access.2025.3528237
摘要

Addressing the challenges of small target detection in aerial infrared images from a drone’s perspective, such as diverse target scales, complex backgrounds, the clustering of small targets, and limited computational resources of the drone platform. This paper proposes a lightweight UAV infrared small target detection algorithm, FECI-RTDETR. Initially, we introduce a lightweight RFConv-Block module that enhances spatial feature extraction capabilities while reducing computational redundancy. Subsequently, we combine the Efficient Additive feature selection mechanism with an intra-scale feature interaction module to form the EA-AIFI module, which strengthens the model’s focus on dense targets and reduces computational burden. Moreover, we introduce the CHS-FPN structure as a cross-scale feature fusion structure, utilizing the coordinate attention mechanism combined with a hierarchical scale-based feature pyramid network. This allows the model to better understand the contextual semantics of targets and improves detection accuracy. Finally, the original GIoU loss is replaced with Inner-GIoU loss, using a scaling factor to control the auxiliary enclosing box, which accelerates convergence speed and enhances detection accuracy for small targets. Experimental results indicate that compared to RT-DETR, the FECI-RTDETR model reduces the number of parameters by 24.56% and floating-point operations by 19.12% on the HIT-UAV dataset. The mAP50 and mAP50:95 metrics improved by 4.2% and 2.9%, respectively, with the mAP50 reaching 84.2%. This algorithmic model achieves a balance between resource reduction and accuracy enhancement while maintaining lightweight characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
妙柏完成签到,获得积分10
1秒前
大个应助刘涵采纳,获得10
1秒前
香蕉觅云应助农村拓哉采纳,获得10
2秒前
Ida完成签到 ,获得积分0
3秒前
须臾完成签到,获得积分10
3秒前
野哥发布了新的文献求助10
3秒前
郑嘻嘻完成签到,获得积分10
4秒前
xx完成签到,获得积分20
4秒前
lin完成签到,获得积分10
4秒前
4秒前
WUXIAOYONG完成签到,获得积分10
4秒前
4秒前
7秒前
正直的笑蓝完成签到,获得积分20
7秒前
czt发布了新的文献求助10
7秒前
7秒前
10秒前
潇洒的凌兰完成签到,获得积分10
10秒前
任伟超完成签到,获得积分10
10秒前
11秒前
刘厚麟发布了新的文献求助10
11秒前
hyy完成签到,获得积分20
12秒前
杜世雍发布了新的文献求助20
12秒前
piglet完成签到 ,获得积分10
12秒前
Perry完成签到,获得积分10
12秒前
12秒前
13秒前
红绿蓝完成签到 ,获得积分10
13秒前
chersa完成签到,获得积分20
13秒前
JamesPei应助Glenn采纳,获得10
13秒前
天天快乐应助张新悦采纳,获得10
14秒前
Yu发布了新的文献求助10
15秒前
刘涵发布了新的文献求助10
15秒前
蟹老板发布了新的文献求助10
15秒前
15秒前
Hello应助nice采纳,获得10
16秒前
hyy发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272436
求助须知:如何正确求助?哪些是违规求助? 4429688
关于积分的说明 13789668
捐赠科研通 4308183
什么是DOI,文献DOI怎么找? 2364041
邀请新用户注册赠送积分活动 1359627
关于科研通互助平台的介绍 1322708