Deep Learning Applied to Diffusion-weighted Imaging for Differentiating Malignant from Benign Breast Tumors without Lesion Segmentation

乳房成像 医学 乳房磁振造影 接收机工作特性 卷积神经网络 人工智能 放射科 磁共振弥散成像 磁共振成像 分割 深度学习 乳腺癌 计算机科学 乳腺摄影术 癌症 内科学
作者
Mami Iima,Ryosuke Mizuno,Masako Kataoka,Kazuki Tsuji,Toshiki Yamazaki,Akihiko Minami,Maya Honda,Keiho Imanishi,Masahiro Takada,Yuji Nakamoto
出处
期刊:Radiology [Radiological Society of North America]
被引量:3
标识
DOI:10.1148/ryai.240206
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To evaluate and compare performance of different artificial intelligence (AI) models in differentiating between benign and malignant breast tumors on diffusion-weighted imaging (DWI), including comparison with radiologist assessments. Materials and Methods In this retrospective study, patients with breast lesions underwent 3T breast MRI from May 2019 to March 2022. In addition to T1-weighted imaging, T2-weighted imaging, and contrast-enhanced imaging, DWI was acquired five b-values (0, 200, 800, 1000, and 1500 s/mm 2 ). DWI data split into training and tuning and test sets were used for the development and assessment of AI models, including a small 2D convolutional neural network (CNN), ResNet18, EfficientNet-B0, and a 3D CNN. Performance of the DWI-based models in differentiating between benign and malignant breast tumors was compared with that of radiologists assessing standard breast MRI, with diagnostic performance assessed using receiver operating characteristic analysis. The study also examined data augmentation effects (A: random elastic deformation, B: random affine transformation/random noise, and C: mixup) on model performance. Results A total of 334 breast lesions in 293 patients (mean age [SD], 56.5 [15.1] years; all female) were analyzed. 2D CNN models outperformed the 3D CNN on the test dataset (area under the receiver operating characteristic curve [AUC] with different data augmentation methods: 0.83–0.88 versus 0.75–0.76). There was no evidence of a difference in performance between the small 2D CNN with augmentations A and B (AUC 0.88) and the radiologists (AUC 0.86) on the test dataset ( P = .64). When comparing the small 2D CNN to radiologists, there was no evidence of a difference in specificity (81.4% versus 72.1%; P = .64) or sensitivity (85.9% versus 98.8%; P = .64). Conclusion AI models, particularly a small 2D CNN, showed good performance in differentiating between malignant and benign breast tumors using DWI, without needing manual segmentation. ©RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dddjs发布了新的文献求助10
刚刚
wmf完成签到 ,获得积分10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
希望天下0贩的0应助ky采纳,获得30
刚刚
迅速芷容应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得20
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得30
1秒前
英俊的铭应助科研通管家采纳,获得30
1秒前
大模型应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
小杭76应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
2秒前
wy.he应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
wisdom应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
蓓蓓0303发布了新的文献求助10
2秒前
VDC应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
bkagyin应助pharmac采纳,获得10
3秒前
4秒前
梦醒完成签到,获得积分10
4秒前
852应助welcomeS采纳,获得10
5秒前
大雄完成签到 ,获得积分20
7秒前
7秒前
一条咸鱼完成签到,获得积分10
8秒前
烟花应助Dr终年采纳,获得10
8秒前
Smy完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286206
求助须知:如何正确求助?哪些是违规求助? 4439117
关于积分的说明 13820017
捐赠科研通 4320822
什么是DOI,文献DOI怎么找? 2371606
邀请新用户注册赠送积分活动 1367203
关于科研通互助平台的介绍 1330636