亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Resisting Noise in Pseudo Labels: Audible Video Event Parsing With Evidential Learning

解析 计算机科学 语音识别 事件(粒子物理) 噪音(视频) 人工智能 自然语言处理 图像(数学) 物理 量子力学
作者
Xun Jiang,Xing Xu,Liqing Zhu,Zhe Sun,Andrzej Cichocki,Heng Tao Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3505674
摘要

Perceiving temporal events and discriminating their modality types in audible videos, which is also called audio-visual video parsing (AVVP), is becoming a research hotspot in multimodal video understanding. The AVVP task generally follows weakly supervised learning settings, since only video-level labels are provided. Most existing works usually generate modalitywise pseudo labels (PLs) first and then learn to parse audio or visual events from the audible videos. However, this paradigm inevitably results in two defects: 1) the generated PLs for each modality are not fully reliable, which may confuse models if they are adopted as supervision signals for discriminating modalities; and 2) the absence of temporal annotations increases the ambiguities in localizing foregrounds in videos, furtherly causing models prone to being disturbed by noisy labels. To tackle these problems, we propose a novel AVVP framework termed noise-resistant event parsing (NREP), which introduces evidential deep learning (EDL) to overcome the limitations of noisy pseudo supervision. Specifically, our NREP framework consists of three key components: 1) modalitywise evidential learning (MEL) that discriminates the modality-class dependency; 2) temporalwise evidential learning (TEL) that explores meaningful foregrounds; and 3) foreground-background consistency learning (FBCL) for collaborating two evidential learning branches above. Through perceiving meaningful video content and learning evidence for modality dependencies, our method suppresses the disturbance of noise in generated PLs thus achieving remarkable performance with different PL generation strategies. We evaluate our NREP method on two AVVP benchmark datasets and demonstrate it consistently to establish new state-of-the-art. Our implementation codes are available at https://github.com/CFM-MSG/NREP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
12秒前
13秒前
旺仔先生完成签到 ,获得积分10
17秒前
harry发布了新的文献求助30
19秒前
科研通AI6应助烟花砰砰砰采纳,获得10
28秒前
coolkid应助隔水樵夫采纳,获得20
30秒前
30秒前
37秒前
ppat5012完成签到,获得积分10
59秒前
乐乐完成签到 ,获得积分10
1分钟前
魔幻诗兰发布了新的文献求助10
1分钟前
1分钟前
chentao发布了新的文献求助10
1分钟前
ncxxxxx应助chentao采纳,获得10
1分钟前
开心的西瓜完成签到,获得积分10
1分钟前
颜林林完成签到,获得积分10
1分钟前
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
Iris完成签到 ,获得积分10
1分钟前
13656479046发布了新的文献求助10
1分钟前
星辰大海应助Lignin采纳,获得10
1分钟前
1分钟前
cc发布了新的文献求助10
1分钟前
1分钟前
yb完成签到,获得积分10
1分钟前
Lignin发布了新的文献求助10
2分钟前
JamesPei应助13656479046采纳,获得10
2分钟前
13656479046完成签到,获得积分10
2分钟前
Yini完成签到,获得积分10
2分钟前
weibo完成签到,获得积分10
2分钟前
111111111完成签到,获得积分10
2分钟前
苏幕完成签到,获得积分10
2分钟前
3分钟前
Lamis完成签到 ,获得积分10
3分钟前
zqq完成签到,获得积分0
3分钟前
Banbor2021完成签到,获得积分0
3分钟前
3分钟前
艾米发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
La RSE en pratique 400
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4427452
求助须知:如何正确求助?哪些是违规求助? 3905364
关于积分的说明 12137322
捐赠科研通 3551312
什么是DOI,文献DOI怎么找? 1948831
邀请新用户注册赠送积分活动 988961
科研通“疑难数据库(出版商)”最低求助积分说明 884787