Advancements and Perspective in the Quantitative Assessment of Soil Salinity Utilizing Remote Sensing and Machine Learning Algorithms: A Review

土壤盐分 盐度 环境科学 元数据 排名(信息检索) 采样(信号处理) 遥感 计算机科学 变量(数学) 土壤科学 湿地 算法 机器学习 数据挖掘 土壤水分 数学 地理 地质学 生态学 数学分析 操作系统 海洋学 滤波器(信号处理) 生物 计算机视觉
作者
Fei Wang,Lili Han,Lulu Liu,Chengjie Bai,Jinxi Ao,Hsiao-Wei Hu,Rongrong Li,Xiaojing Li,Xian Guo,Wei Yang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (24): 4812-4812 被引量:1
标识
DOI:10.3390/rs16244812
摘要

Soil salinization is a significant global ecological issue that leads to soil degradation and is recognized as one of the primary factors hindering the sustainable development of irrigated farmlands and deserts. The integration of remote sensing (RS) and machine learning algorithms is increasingly employed to deliver cost-effective, time-efficient, spatially resolved, accurately mapped, and uncertainty-quantified soil salinity information. We reviewed articles published between January 2016 and December 2023 on remote sensing-based soil salinity prediction and synthesized the latest research advancements in terms of innovation points, data, methodologies, variable importance, global soil salinity trends, current challenges, and potential future research directions. Our observations indicate that the innovations in this field focus on detection depth, iterations of data conversion methods, and the application of newly developed sensors. Statistical analysis reveals that Landsat is the most frequently utilized sensor in these studies. Furthermore, the application of deep learning algorithms remains underexplored. The ranking of soil salinity prediction accuracy across the various study areas is as follows: lake wetland (R2 = 0.81) > oasis (R2 = 0.76) > coastal zone (R2 = 0.74) > farmland (R2 = 0.71). We also examined the relationship between metadata and prediction accuracy: (1) Validation accuracy, sample size, number of variables, and mean sample salinity exhibited some correlation with modeling accuracy, while sampling depth, variable type, sampling time, and maximum salinity did not influence modeling accuracy. (2) Across a broad range of scales, large sample sizes may lead to error accumulation, which is associated with the geographic diversity of the study area. (3) The inclusion of additional environmental variables does not necessarily enhance modeling accuracy. (4) Modeling accuracy improves when the mean salinity of the study area exceeds 30 dS/m. Topography, vegetation, and temperature are relatively significant environmental covariates. Over the past 30 years, the global area affected by soil salinity has been increasing. To further enhance prediction accuracy, we provide several suggestions for the challenges and directions for future research. While remote sensing is not the sole solution, it provides unique advantages for soil salinity-related studies at both regional and global scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
平常的青荷完成签到,获得积分10
3秒前
6秒前
6秒前
科研通AI5应助tdtk采纳,获得10
8秒前
科目三应助比大家采纳,获得10
10秒前
宝宝时代发布了新的文献求助10
11秒前
隋阳完成签到,获得积分10
12秒前
学渣路过完成签到,获得积分0
12秒前
14秒前
15秒前
dzll完成签到,获得积分10
16秒前
科研通AI5应助不太想学习采纳,获得10
24秒前
小蘑菇应助加菲丰丰采纳,获得20
26秒前
27秒前
今后应助hannibal采纳,获得10
30秒前
执执发布了新的文献求助10
32秒前
35秒前
动漫大师发布了新的文献求助10
36秒前
37秒前
蒋瑞轩发布了新的文献求助10
40秒前
SciGPT应助小h采纳,获得10
40秒前
40秒前
南风完成签到,获得积分10
41秒前
桐桐应助努力考博采纳,获得10
45秒前
蒋瑞轩完成签到,获得积分10
46秒前
纠纠发布了新的文献求助10
46秒前
动漫大师发布了新的文献求助10
48秒前
子车茗应助JIANYOUFU采纳,获得30
49秒前
51秒前
传奇3应助zhu采纳,获得30
52秒前
55秒前
华仔应助科研通管家采纳,获得10
56秒前
ding应助科研通管家采纳,获得10
56秒前
田様应助科研通管家采纳,获得10
56秒前
在水一方应助科研通管家采纳,获得10
56秒前
在水一方应助科研通管家采纳,获得10
56秒前
充电宝应助科研通管家采纳,获得10
56秒前
华仔应助科研通管家采纳,获得10
56秒前
隐形曼青应助科研通管家采纳,获得10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322050
关于积分的说明 10208614
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878