Identification of hub biomarkers in liver post-metabolic and bariatric surgery using comprehensive machine learning (experimental studies)

医学 逻辑回归 脂肪肝 机器学习 肝细胞癌 肝硬化 人工智能 计算生物学 生物信息学 疾病 内科学 计算机科学 生物
作者
Zhehong Li,Liang Wang,Chenxu Tian,Zheng Wang,Hao Zhao,Qi Yao,Weijian Chen,Qiqige Wuyun,Buhe Amin,Dongbo Lian,Jin‐Xia Zhu,Nengwei Zhang,Li‐Fei Zheng,Guangzhong Xu
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:111 (2): 1814-1824 被引量:2
标识
DOI:10.1097/js9.0000000000002179
摘要

Background: The global prevalence of non-alcoholic fatty liver disease (NAFLD) is approximately 30%, and the condition can progress to non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Metabolic and bariatric surgery (MBS) has been shown to be effective in treating obesity and related disorders, including NAFLD. Objective: In this study, comprehensive machine learning was used to identify biomarkers for precise treatment of NAFLD from the perspective of MBS. Methods: Differential expression and univariate logistic regression analyses were performed on lipid metabolism-related genes in a training dataset (GSE83452) and two validation datasets (GSE106737 and GSE48452) to identify consensus-predicted genes (CPGs). Subsequently, 13 machine learning algorithms were integrated into 99 combinations; among which the optimal combination was selected based on the total score of the area under the curve, accuracy, F-score, and recall in the two validation datasets. Hub genes were selected based on their importance ranking in the algorithms and the frequency of their occurrence. Finally, a mouse model of MBS was established, and the mRNA expression of the hub genes was validated via quantitative PCR. Results: A total of 12 CPGs were identified after intersecting the results of differential expression and logistic regression analyses on a Venn diagram. Four machine learning algorithms with the highest total scores were identified as optimal models. Additionally, PPARA, PLIN2, MED13, INSIG1, CPT1A, and ALOX5AP were identified as hub genes. The mRNA expression patterns of these genes in mice subjected to MBS were consistent with those observed in the three datasets. Conclusion: Altogether, the six hub genes identified in this study are important for the treatment of NAFLD via MBS and hold substantial promise in guiding personalized treatment of NAFLD in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wddfz完成签到,获得积分10
1秒前
changping发布了新的文献求助10
1秒前
科目三应助噗宝凹采纳,获得10
1秒前
Wheeler完成签到 ,获得积分10
1秒前
儒雅的菲鹰完成签到,获得积分10
2秒前
2秒前
Johnny完成签到,获得积分10
2秒前
慕青应助dachuichui采纳,获得10
3秒前
情怀应助坐标采纳,获得10
3秒前
3秒前
丑小鸭发布了新的文献求助10
4秒前
4秒前
111发布了新的文献求助20
4秒前
黄琳完成签到,获得积分10
5秒前
5秒前
5秒前
大模型应助细雨微凉采纳,获得30
5秒前
动听以晴完成签到,获得积分10
5秒前
ding应助CT采纳,获得10
5秒前
5秒前
酷酷慕山完成签到 ,获得积分10
6秒前
科研通AI6应助田一采纳,获得30
6秒前
zgt01发布了新的文献求助10
6秒前
6秒前
WJQ应助加减乘除采纳,获得50
6秒前
乐观文轩发布了新的文献求助10
6秒前
DDL完成签到 ,获得积分10
7秒前
CodeCraft应助leo采纳,获得10
7秒前
浮游应助Hexagram采纳,获得10
7秒前
无心的仇血完成签到,获得积分10
7秒前
8秒前
8秒前
甜美奇异果完成签到,获得积分10
8秒前
YDSG完成签到,获得积分10
8秒前
dxy发布了新的文献求助10
8秒前
8秒前
华仔应助诉与山风听采纳,获得10
9秒前
方法法国衣服头发完成签到,获得积分10
9秒前
可爱的函函应助一二三四采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192898
求助须知:如何正确求助?哪些是违规求助? 4375730
关于积分的说明 13626256
捐赠科研通 4230249
什么是DOI,文献DOI怎么找? 2320335
邀请新用户注册赠送积分活动 1318693
关于科研通互助平台的介绍 1269005