Using remote sensing and machine learning to generate 100-cm soil moisture at 30-m resolution for the black soil region of China: Implication for agricultural water management

含水量 环境科学 农业 中国 分辨率(逻辑) 土壤水分 农业管理 土壤科学 遥感 水文学(农业) 农业工程 地理 地质学 计算机科学 工程类 岩土工程 人工智能 考古
作者
Liwen Chen,Boting Hu,Jingxuan Sun,Y. Jun Xu,Guangxin Zhang,Hongbo Ma,Jingquan Ren
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:309: 109353-109353 被引量:12
标识
DOI:10.1016/j.agwat.2025.109353
摘要

Multi-layer soil moisture is an important factor in predicting agricultural droughts and waterlogging, with significant implications for the growth, development, and yield prediction of rain fed crops. However, soil moisture datasets or algorithms fail to simultaneously meet the requirements of multi-layer, high spatiotemporal resolution soil moisture information for large-scale agricultural production areas. To fill this gap, we propose a novel framework for estimation high spatial resolution multi-layer soil moisture data. Firstly, utilizing the Google Earth Engine (GEE) platform and Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), we achieve the fusion of multi-source remote sensing data at large scales to obtain high spatiotemporal resolution Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) data. Secondly, leveraging the Extreme Gradient Boosting (XGBoost) model along with reanalysis and in-situ measurements, we estimate soil moisture information across depths of 0–100 cm depth by 10 cm interval over large geographical extents. Finally, the accuracy of the soil moisture model is assessed using metrics such as Pearson correlation coefficient, root mean square error (RMSE), unbiased RMSE (ubRMSE), and bias. To assess the applicability of our research methodology, we selected the typical black soil zone in Northeast of China, which is one of the four major black soil regions globally and characterized by intensive agricultural activities. We estimated the long-term time series of soil moisture information during the growing seasons from 2000 to 2020 in this study area. We found that the soil moisture simulation based on the XGBoost model the worst values of R, RMSE, ubRMSE, and Bias values for the training set are 0.86,1.49,1.49 and −0.039 respectively. For the validation set, the worst value of R is 0.83. The proposed methodology in this study enables the acquisition of soil moisture information with both large-scale coverage and high spatiotemporal resolution. This advancement holds significant promise for fine-scale research and applications in agricultural, hydrological, and environmental fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助1212采纳,获得10
2秒前
一斤欠半完成签到 ,获得积分10
2秒前
NEKO发布了新的文献求助30
4秒前
qqq发布了新的文献求助10
4秒前
甜美的瑾瑜完成签到,获得积分10
4秒前
5秒前
5秒前
烟花应助优美平凡采纳,获得10
6秒前
徐风年完成签到,获得积分10
6秒前
张豪奇关注了科研通微信公众号
7秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
12138发布了新的文献求助10
10秒前
小远远应助牛牛向前冲采纳,获得10
10秒前
回忆完成签到,获得积分10
11秒前
共享精神应助甘特采纳,获得10
11秒前
11秒前
凉皮完成签到 ,获得积分10
13秒前
13秒前
clyde凌丫完成签到 ,获得积分10
14秒前
田様应助勇者义彦采纳,获得10
14秒前
14秒前
14秒前
15秒前
喜东东完成签到,获得积分10
15秒前
Harden完成签到,获得积分10
15秒前
魔幻的小蘑菇完成签到 ,获得积分10
16秒前
tt完成签到,获得积分10
16秒前
一封发布了新的文献求助10
16秒前
Lost丶猪猪侠完成签到,获得积分10
17秒前
17秒前
17秒前
乐乐应助qqq采纳,获得10
18秒前
小J完成签到,获得积分10
19秒前
20秒前
莫晓岚完成签到 ,获得积分10
20秒前
周凡淇发布了新的文献求助10
21秒前
21秒前
金葡菌发布了新的文献求助10
21秒前
英吉利25发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604322
求助须知:如何正确求助?哪些是违规求助? 4689080
关于积分的说明 14857878
捐赠科研通 4697618
什么是DOI,文献DOI怎么找? 2541249
邀请新用户注册赠送积分活动 1507374
关于科研通互助平台的介绍 1471874