Cascaded neural network surrogate modeling for real-time decision-making in long-distance water supply distribution

人工神经网络 替代模型 计算机科学 分布(数学) 人工智能 机器学习 数学 数学分析
作者
Lin Shi,Jian Zhang,Sheng Chen,Yi Liu,Wenlong Zhao
出处
期刊:Engineering Applications of Computational Fluid Mechanics [Taylor & Francis]
卷期号:19 (1)
标识
DOI:10.1080/19942060.2025.2453080
摘要

Effective water distribution in long-distance supply systems requires precise control over pump station operations and flow-regulating elements, such as pump speeds and valve openings, typically achieved through hydraulic models. However, traditional hydraulic models are time-intensive to develop and require frequent calibration, limiting their practicality for real-time applications. This paper presents a cascaded neural network (CNN) model that integrates classification and regression components to serve as an efficient surrogate model for real-time water distribution decision-making. In the proposed CNN model, the classification component identifies the number of pumps needed to meet system flow demands, while the regression component predicts target values for pump speeds and valve openings. Considering the nonlinear relationship between flow rate and regulating elements, flow error was introduced as an evaluation metric via Orthogonal-Triangular (QR) decomposition. The CNN model's performance and robustness were validated using data from an actual long-distance water supply system, including analyses of its sensitivity to uncertainties in the reservoir level and flow rate measurements. Results demonstrate that the CNN model achieves more accurate and efficient predictions compared to the traditional pure regression neural networks. Furthermore, uncertainty analysis reveals that while the CNN model is less affected by reservoir level measurement errors, it is more sensitive to flow rate measurement errors, underscoring importance of precise flow monitoring in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
救救孩子完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
冷傲的大树完成签到,获得积分10
2秒前
lulu发布了新的文献求助10
2秒前
minel发布了新的文献求助10
2秒前
霜打了的葡萄完成签到,获得积分10
3秒前
铁瓜李完成签到 ,获得积分10
3秒前
3秒前
曲奇饼干发布了新的文献求助10
3秒前
4秒前
zyq199710完成签到,获得积分10
4秒前
4秒前
顾宇完成签到,获得积分10
5秒前
huchen完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
CDabin发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
Ava应助LiuAndy采纳,获得10
8秒前
ftl完成签到 ,获得积分10
9秒前
9秒前
NexusExplorer应助完美豪采纳,获得10
9秒前
10秒前
10秒前
10秒前
所所应助业伟采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A new approach to VOF-based interface capturing methods for incompressible and compressible flow 800
A Treatise on the Mathematical Theory of Elasticity 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5249129
求助须知:如何正确求助?哪些是违规求助? 4413817
关于积分的说明 13738437
捐赠科研通 4285078
什么是DOI,文献DOI怎么找? 2351309
邀请新用户注册赠送积分活动 1348168
关于科研通互助平台的介绍 1307844