Graph attention network for link prediction of gene regulations from single cell RNA-sequencing data

推论 基因调控网络 计算机科学 计算生物学 成对比较 RNA序列 人工智能 生物 机器学习 数据挖掘
作者
Guangyi Chen,Zhi-Ping Liu
出处
期刊:Bioinformatics [Oxford University Press]
标识
DOI:10.1093/bioinformatics/btac559
摘要

Single-cell RNA sequencing (scRNA-seq) data provides unprecedented opportunities to reconstruct gene regulatory networks (GRNs) at fine-grained resolution. Numerous unsupervised or self-supervised models have been proposed to infer GRN from bulk RNA-seq data, but few of them are appropriate for scRNA-seq data under the circumstance of low signal-to-noise ratio and dropout. Fortunately, the surging of TF-DNA binding data (e.g., ChIP-seq) makes supervised GRN inference possible. We regard supervised GRN inference as a graph-based link prediction problem that expects to learn gene low-dimensional vectorized representations to predict potential regulatory interactions.In this paper, we present GENELink to infer latent interactions between transcription factors (TFs) and target genes in GRN using graph attention network. GENELink projects the single-cell gene expression with observed TF-gene pairs to a low-dimensional space. Then, the specific gene representations are learned to serve for downstream similarity measurement or causal inference of pairwise genes by optimizing the embedding space. Compared to eight existing GRN reconstruction methods, GENELink achieves comparable or better performance on seven scRNA-seq datasets with four types of ground-truth networks. We further apply GENELink on scRNA-seq of human breast cancer metastasis and reveal regulatory heterogeneity of Notch and Wnt signaling pathways between primary tumour and lung metastasis. Moreover, the ontology enrichment results of unique lung metastasis GRN indicate that mitochondrial oxidative phosphorylation (OXPHOS) is functionally important during the seeding step of the cancer metastatic cascade, which is validated by pharmacological assays.The code and data are available at https://github.com/zpliulab/GENELink.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑亚铎发布了新的文献求助10
刚刚
奥特曼完成签到,获得积分10
2秒前
666发布了新的文献求助10
3秒前
4秒前
4秒前
老实尔烟完成签到,获得积分10
4秒前
Lolo完成签到 ,获得积分10
4秒前
欣喜书蕾完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
空白完成签到 ,获得积分10
8秒前
郑亚铎完成签到,获得积分10
8秒前
科研通AI5应助skyleon采纳,获得10
9秒前
Csy完成签到,获得积分10
10秒前
惠飞薇发布了新的文献求助10
11秒前
SilentStorm完成签到,获得积分10
12秒前
character577完成签到,获得积分10
12秒前
充电宝应助欣喜书蕾采纳,获得10
13秒前
哈哈悦完成签到,获得积分10
14秒前
Chris完成签到 ,获得积分0
15秒前
风趣安雁完成签到,获得积分10
18秒前
落落完成签到 ,获得积分0
18秒前
苯环完成签到,获得积分10
20秒前
阿琦完成签到 ,获得积分10
22秒前
JamesPei应助科研通管家采纳,获得10
25秒前
不倦应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
科研通AI5应助科研通管家采纳,获得30
25秒前
25秒前
惠_____完成签到 ,获得积分10
26秒前
撒旦撒完成签到,获得积分10
28秒前
YU发布了新的文献求助10
28秒前
小蘑菇应助惠飞薇采纳,获得10
29秒前
lili完成签到 ,获得积分10
32秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779459
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220692
捐赠科研通 3040129
什么是DOI,文献DOI怎么找? 1668576
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522