Pseudo Complex-Valued Deformable ConvLSTM Neural Network With Mutual Attention Learning for Hyperspectral Image Classification

人工智能 计算机科学 可解释性 深度学习 模式识别(心理学) 高光谱成像 卷积神经网络 人工神经网络 机器学习
作者
Wen-Shuai Hu,Heng-Chao Li,Rui Wang,Feng Gao,Qian Du,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:5
标识
DOI:10.1109/tgrs.2022.3188791
摘要

Convolutional long short-term memory (ConvLSTM) has received much attention for hyperspectral image (HSI) classification due to its ability of modeling long-range correlations, which, however, is vulnerable to too many parameters and insufficient training, limiting its classification accuracy, especially for small samples. Different from it, traditional hand-crafted methods extract the features with basic attributes of HSIs, which can provide the lack of details and interpretability of deep semantic features. However, existing methods fail to incorporate their complementarity for HSI classification. As such, a Pseudo complex-valued (CV) Deformable ConvLSTM Neural Network with mutual Attention learning (APDCLNN) is proposed, providing a new way to realize the collaborative learning of hand-crafted and deep features for HSI classification. First, a 2-D pseudo CV deformable ConvLSTM (PDConvLSTM2D) cell is designed using deformable convolution and complex operations, with which a spatial–spectral PDConvLSTM2D neural network (SSPDCL2DNN) is built to extract scale- and spectral-enhanced deep spatial–spectral features. Then, 3-D Gabor filter is used to extract hand-crafted features, and a mutual attention-based multimodality feature learning and fusion (MAMLF) module is designed to integrate them into deep features for training and optimization of SSPDCL2DNN. Finally, an attention loss subnetwork is designed to refine the classification results. As we know, this is the first attempt to apply the idea of mutual attention learning to fuse hand-crafted and deep features for HSI classification. Extensive experiments on three widely used HSI datasets show the advantages of our model over other deep methods in terms of both quantitative and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿完成签到,获得积分10
1秒前
1秒前
2秒前
包元霜应助眯眯眼的笑采纳,获得10
2秒前
天真元冬完成签到,获得积分10
2秒前
3秒前
4秒前
ShuangHan发布了新的文献求助10
4秒前
Lu发布了新的文献求助10
4秒前
卜卜完成签到,获得积分10
4秒前
不想干活应助沧海泪采纳,获得10
5秒前
一个小胖子完成签到,获得积分10
5秒前
6秒前
6秒前
顺心的雪糕完成签到,获得积分10
6秒前
天真元冬发布了新的文献求助10
7秒前
可爱的函函应助ZHANG采纳,获得10
7秒前
郁香薇发布了新的文献求助10
7秒前
xzy998应助老迟到的幼枫采纳,获得10
8秒前
科目三应助摇滚蜗牛采纳,获得10
8秒前
8秒前
葛二蛋完成签到,获得积分10
9秒前
Washfacemilk完成签到,获得积分10
9秒前
易达发布了新的文献求助30
10秒前
田様应助fly采纳,获得10
10秒前
10秒前
Violet发布了新的文献求助10
10秒前
桐桐应助称心的南霜采纳,获得10
10秒前
10秒前
叶黄素完成签到,获得积分10
10秒前
CodeCraft应助义气念柏采纳,获得10
11秒前
科研通AI5应助生动丹珍采纳,获得10
11秒前
菠萝完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
找找完成签到 ,获得积分10
13秒前
曾天祥应助结实南珍采纳,获得10
13秒前
14秒前
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4163404
求助须知:如何正确求助?哪些是违规求助? 3699181
关于积分的说明 11679305
捐赠科研通 3388984
什么是DOI,文献DOI怎么找? 1858384
邀请新用户注册赠送积分活动 919138
科研通“疑难数据库(出版商)”最低求助积分说明 831815