Machine learning for the prediction of osteopenia/osteoporosis using the CT attenuation of multiple osseous sites from chest CT

医学 霍恩斯菲尔德秤 骨量减少 骨质疏松症 核医学 接收机工作特性 放射科 骨矿物 计算机断层摄影术 内科学
作者
Ronnie Sebro,Cynthia De la Garza‐Ramos
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:155: 110474-110474 被引量:23
标识
DOI:10.1016/j.ejrad.2022.110474
摘要

To use machine learning and the CT attenuation of all bones visible on chest CT scans to predict osteopenia/osteoporosis.We retrospectively evaluated 364 patients with CT scans of the chest, and Dual-energy X-ray absorptiometry (DXA) scans within 6 months of each other. Studies were performed between 01/01/2015 and 08/01/2021. Volumetric segmentation of the ribs, thoracic vertebrae, sternum, and clavicle was performed using 3D Slicer to obtain the mean CT attenuation of each bone. The study sample was randomly split into training/validation (80 %, n = 291 patients) and test (20 %, n = 73 patients) datasets. Univariate analyses were used to identify the optimal CT attenuation thresholds to diagnose osteopenia/osteoporosis. We used penalized multivariable logistic regression models including Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net, and Ridge regression, and Support Vector Machines (SVM) with radial basis functions (RBF) to predict osteopenia/osteoporosis and compared these results to the CT attenuation threshold at T12.There were positive correlations between the CT attenuation between all bones (r > 0.6, P < 0.001 for all). There were positive correlations between CT attenuation of the bones and the L1-L4 BMD T-score, total hip T-score, and femoral neck T-scores (r > 0.4, P < 0.001 for all). A CT attenuation threshold of 170.2 Hounsfield units (HU) at T12 had an AUC of 0.702, while a threshold of 192.1 HU at T4 had an AUC of 0.757. The SVM with RBF had the highest AUC (AUC = 0.864) and was better than the LASSO (P = 0.011), Elastic Net (P = 0.011), Ridge regression (P = 0.011) but was not better than using the CT attenuation at T12 (P = 0.060).The CT attenuation of the ribs, thoracic vertebra, sternum, and clavicle can be used individually and collectively to predict BMD and to predict osteopenia/osteoporosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SD完成签到 ,获得积分10
刚刚
老实幻姬完成签到,获得积分10
3秒前
孟寐以求发布了新的文献求助10
4秒前
玻璃球完成签到 ,获得积分10
5秒前
风趣霆完成签到,获得积分10
6秒前
Werner完成签到 ,获得积分10
6秒前
轻松的GIGI完成签到,获得积分10
6秒前
淡淡土豆应助陈秋采纳,获得10
6秒前
Jieh完成签到,获得积分10
6秒前
房东家的猫完成签到,获得积分10
8秒前
hlt完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
11秒前
Cylair完成签到,获得积分10
11秒前
浮游应助落花生采纳,获得10
13秒前
浮游应助落花生采纳,获得10
13秒前
机灵纸鹤完成签到 ,获得积分10
13秒前
孟寐以求完成签到,获得积分10
14秒前
张sir完成签到,获得积分10
14秒前
会撒娇的乌冬面完成签到 ,获得积分10
14秒前
花生四烯酸完成签到 ,获得积分10
15秒前
文献高手完成签到 ,获得积分10
15秒前
濮阳盼曼完成签到,获得积分10
15秒前
直率若烟完成签到 ,获得积分10
16秒前
俞无声完成签到 ,获得积分10
17秒前
迷你的傲白完成签到 ,获得积分10
17秒前
18秒前
AA完成签到 ,获得积分10
18秒前
Qing完成签到 ,获得积分10
19秒前
zr1109完成签到,获得积分10
19秒前
虚拟的画板完成签到 ,获得积分10
19秒前
鲸落完成签到 ,获得积分10
22秒前
明理的亦寒完成签到 ,获得积分10
22秒前
纪梵希完成签到,获得积分10
24秒前
bener完成签到,获得积分10
28秒前
枫糖叶落完成签到,获得积分10
28秒前
小高完成签到 ,获得积分10
29秒前
落花生完成签到,获得积分10
29秒前
忐忑的中心完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516462
求助须知:如何正确求助?哪些是违规求助? 4609394
关于积分的说明 14515011
捐赠科研通 4546077
什么是DOI,文献DOI怎么找? 2491074
邀请新用户注册赠送积分活动 1472853
关于科研通互助平台的介绍 1444785