Machine learning for the prediction of osteopenia/osteoporosis using the CT attenuation of multiple osseous sites from chest CT

医学 霍恩斯菲尔德秤 骨量减少 骨质疏松症 核医学 接收机工作特性 放射科 骨矿物 计算机断层摄影术 内科学
作者
Ronnie Sebro,Cynthia De la Garza‐Ramos
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:155: 110474-110474 被引量:23
标识
DOI:10.1016/j.ejrad.2022.110474
摘要

To use machine learning and the CT attenuation of all bones visible on chest CT scans to predict osteopenia/osteoporosis.We retrospectively evaluated 364 patients with CT scans of the chest, and Dual-energy X-ray absorptiometry (DXA) scans within 6 months of each other. Studies were performed between 01/01/2015 and 08/01/2021. Volumetric segmentation of the ribs, thoracic vertebrae, sternum, and clavicle was performed using 3D Slicer to obtain the mean CT attenuation of each bone. The study sample was randomly split into training/validation (80 %, n = 291 patients) and test (20 %, n = 73 patients) datasets. Univariate analyses were used to identify the optimal CT attenuation thresholds to diagnose osteopenia/osteoporosis. We used penalized multivariable logistic regression models including Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net, and Ridge regression, and Support Vector Machines (SVM) with radial basis functions (RBF) to predict osteopenia/osteoporosis and compared these results to the CT attenuation threshold at T12.There were positive correlations between the CT attenuation between all bones (r > 0.6, P < 0.001 for all). There were positive correlations between CT attenuation of the bones and the L1-L4 BMD T-score, total hip T-score, and femoral neck T-scores (r > 0.4, P < 0.001 for all). A CT attenuation threshold of 170.2 Hounsfield units (HU) at T12 had an AUC of 0.702, while a threshold of 192.1 HU at T4 had an AUC of 0.757. The SVM with RBF had the highest AUC (AUC = 0.864) and was better than the LASSO (P = 0.011), Elastic Net (P = 0.011), Ridge regression (P = 0.011) but was not better than using the CT attenuation at T12 (P = 0.060).The CT attenuation of the ribs, thoracic vertebra, sternum, and clavicle can be used individually and collectively to predict BMD and to predict osteopenia/osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亚婷儿完成签到,获得积分10
1秒前
3秒前
火星上的灵竹完成签到,获得积分10
5秒前
一减完成签到 ,获得积分10
6秒前
GreenDuane完成签到 ,获得积分0
8秒前
Hxq完成签到 ,获得积分10
8秒前
chen发布了新的文献求助10
9秒前
10秒前
DrW完成签到,获得积分10
10秒前
冬瓜熊完成签到,获得积分10
11秒前
点凌蝶完成签到,获得积分10
12秒前
一晃儿完成签到,获得积分10
13秒前
忽忽发布了新的文献求助10
15秒前
16秒前
小卷粉发布了新的文献求助20
17秒前
养猪人完成签到,获得积分10
17秒前
香蕉觅云应助upsoar采纳,获得10
18秒前
Diana驳回了iNk应助
20秒前
合适的自行车完成签到,获得积分10
21秒前
lilylian完成签到,获得积分10
21秒前
肉酱完成签到 ,获得积分10
21秒前
机灵橘子完成签到,获得积分10
24秒前
26秒前
27秒前
为你博弈完成签到,获得积分10
28秒前
青云完成签到,获得积分10
29秒前
Dromaeotroodon完成签到,获得积分10
30秒前
upsoar发布了新的文献求助10
31秒前
欣喜沛芹完成签到,获得积分10
32秒前
34秒前
yifei完成签到,获得积分10
35秒前
月光族完成签到,获得积分10
35秒前
35秒前
嘎嘎慢点走完成签到 ,获得积分10
36秒前
gao完成签到 ,获得积分10
37秒前
zhouleiwang完成签到,获得积分10
37秒前
小康学弟完成签到 ,获得积分10
38秒前
文献发布了新的文献求助10
39秒前
48秒前
xc完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780938
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227091
捐赠科研通 3041639
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734