清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

RETRACTED: A prediction model for the performance of solar photovoltaic-thermoelectric systems utilizing various semiconductors via optimal surrogate machine learning methods

光伏系统 替代模型 计算机科学 人工神经网络 热电效应 性能预测 机器学习 人工智能 材料科学 电子工程 工程类 模拟 电气工程 热力学 物理
作者
Hisham Alghamdi,Chika Maduabuchi,Abdullah Albaker,Ibrahim Alatawi,Theyab R. Alsenani,Ahmed S. Alsafran,Abdulaziz Almalaq,Mohammed A. AlAqil,Mostafa A.H. Abdelmohimen,Mohammad Alkhedher
出处
期刊:Engineering Science and Technology, an International Journal [Elsevier]
卷期号:40: 101363-101363 被引量:10
标识
DOI:10.1016/j.jestch.2023.101363
摘要

This research focuses on finding the best surrogate performance prediction model for a solar photovoltaic-thermoelectric (PV-TE) module with different semiconductor materials. The need for a surrogate machine learning model arises due to the inefficiency of the current numerical simulations used to assess the performance of the device. The study introduces several surrogate machine learning models, such as recurrent, time delay, and regular artificial neural networks (ANNs), that are trained using expensive finite element generated data when the operating parameters of the system are altered. These parameters include the optical concentration ratio, cooling coefficient, wind speed, air temperature, glass emissivity, semiconductor dimensions, external load resistance, and thermoelectric current. Despite the time-intensive and costly data generation method, 714 datapoints were produced and utilized to train the surrogate machine learning models for improved performance prediction and optimization. The results indicate that the optimal machine learning model for solar PV-TE performance modelling was the ANN architecture with two hidden layers and five neurons per layer. Furthermore, lithium nitride oxide PV-TE showed a 65% improvement over the popular bismuth telluride PV-TE when tested under 25 Suns. The surrogate ANN also outperformed the conventional numerical simulations by 10,000 times using the same computing resources. Finally, the study suggests the potential of recurrent and time delay neural networks for modelling time series PV-TE data in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
13秒前
34秒前
学生信的大叔完成签到,获得积分10
49秒前
1分钟前
1分钟前
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
silence完成签到 ,获得积分10
2分钟前
咯咯咯完成签到 ,获得积分10
3分钟前
ccl发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Benhnhk21完成签到,获得积分10
4分钟前
科研通AI6应助华杰采纳,获得10
4分钟前
4分钟前
Moto_Fang完成签到 ,获得积分10
4分钟前
华杰完成签到,获得积分10
4分钟前
yipmyonphu应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
白华苍松发布了新的文献求助10
5分钟前
ccl完成签到,获得积分10
5分钟前
5分钟前
5分钟前
shhoing应助niko采纳,获得10
5分钟前
领导范儿应助niko采纳,获得10
5分钟前
酷波er应助niko采纳,获得10
5分钟前
科研通AI2S应助niko采纳,获得10
5分钟前
小蘑菇应助niko采纳,获得10
5分钟前
6分钟前
爆米花应助白华苍松采纳,获得10
6分钟前
6分钟前
muriel完成签到,获得积分0
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534469
求助须知:如何正确求助?哪些是违规求助? 4622450
关于积分的说明 14582630
捐赠科研通 4562656
什么是DOI,文献DOI怎么找? 2500278
邀请新用户注册赠送积分活动 1479820
关于科研通互助平台的介绍 1451022