已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

YOLO-Former: Marrying YOLO and Transformer for Foreign Object Detection

目标检测 计算机科学 变压器 人工智能 计算机视觉 工程类 模式识别(心理学) 电气工程 电压
作者
Yuan Dai,Weiming Liu,Heng Wang,Wei Xie,Kejun Long
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:39
标识
DOI:10.1109/tim.2022.3219468
摘要

The automatic detection of foreign objects between platform screen doors (PSDs) and metro train doors significantly affects personnel and property safety and maintains the train's normal operation. However, some existing works only determine the presence of foreign objects but cannot indicate their categories. Besides, although deep-learning-based object detection algorithms can indicate the presence and categories of foreign objects, most of them only harness the information in region proposals, ignoring global contextual information. Furthermore, their performance comes at the considerable cost of computational complexity, and leading cannot be well deployed in the metro environment. To address these issues and better implement foreign object detection (FOD), we present You Only Look Once-Transformer (YOLO-Former), a simple but efficient model. YOLO-Former is accomplished based on YOLOv5 through the following procedure. First, the vision transformer (ViT) is introduced for dynamic attention and global modeling, thereby solving the problem that the original YOLOv5 only utilizes information in region proposals and has insufficient ability to capture global information. Second, the convolutional block attention module (CBAM) and Stem module are used to improve feature expression ability further and reduce floating point operations (FLOPs). Finally, we design various variants with different widths and depths to meet every need. Experiments on the foreign object detection dataset (FODD) and PASCAL VOC dataset demonstrate that YOLO-Former-x consistently outperforms other state-of-the-arts with significant margins (0.5 to 11.3 mean average precision, mAP, on FODD and 0.6 to 13.6 on PASCAL VOC dataset). Last but not least, YOLO-Former-x maintains real-time processing speed (27.32 and 28.17 frame per second, FPS, on TITAN Xp).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
跳跃凡桃完成签到 ,获得积分10
3秒前
YIFGU完成签到 ,获得积分10
4秒前
felix发布了新的文献求助10
6秒前
cfplhys发布了新的文献求助10
7秒前
英俊的铭应助西瓜汽水采纳,获得10
8秒前
言午完成签到,获得积分10
8秒前
10秒前
周子完成签到,获得积分10
12秒前
xf潇洒哥完成签到,获得积分20
13秒前
13秒前
ronnie发布了新的文献求助10
16秒前
16秒前
16秒前
nenoaowu发布了新的文献求助10
19秒前
酷波er应助大猫采纳,获得10
22秒前
22秒前
ddj完成签到 ,获得积分10
23秒前
科研通AI5应助Yy采纳,获得10
24秒前
fwda1000完成签到 ,获得积分10
24秒前
26秒前
27秒前
恋雅颖月发布了新的文献求助10
28秒前
29秒前
32秒前
33秒前
阿吉完成签到,获得积分10
35秒前
Hello应助恋雅颖月采纳,获得10
36秒前
real发布了新的文献求助10
38秒前
完美世界应助言言采纳,获得10
39秒前
Yy发布了新的文献求助10
39秒前
39秒前
一只小鬼Q完成签到 ,获得积分10
40秒前
断棍豪斯完成签到,获得积分10
40秒前
homer完成签到,获得积分10
42秒前
44秒前
lvlulu发布了新的文献求助10
45秒前
46秒前
无语的小熊猫完成签到 ,获得积分10
46秒前
orixero应助优雅青梦采纳,获得10
48秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784640
求助须知:如何正确求助?哪些是违规求助? 3329746
关于积分的说明 10243399
捐赠科研通 3045072
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800458
科研通“疑难数据库(出版商)”最低求助积分说明 759391