Deep learning based on preoperative magnetic resonance (MR) images improves the predictive power of survival models in primary spinal cord astrocytomas

医学 磁共振成像 分割 星形细胞瘤 管道(软件) 深度学习 人工智能 放射科 胶质瘤 计算机科学 程序设计语言 癌症研究
作者
Ting Sun,Yongzhi Wang,Xing Liu,Zhaohui Li,Jie Zhang,Jing Lü,Liying Qu,Sven Haller,Yunyun Duan,Zhizheng Zhuo,Dan Cheng,Xiaolu Xu,Wenqing Jia,Yaou Liu
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (6): 1157-1165 被引量:5
标识
DOI:10.1093/neuonc/noac280
摘要

Prognostic models for spinal cord astrocytoma patients are lacking due to the low incidence of the disease. Here, we aim to develop a fully automated deep learning (DL) pipeline for stratified overall survival (OS) prediction based on preoperative MR images.A total of 587 patients diagnosed with intramedullary tumors were retrospectively enrolled in our hospital to develop an automated pipeline for tumor segmentation and OS prediction. The automated pipeline included a T2WI-based tumor segmentation model and 3 cascaded binary OS prediction models (1-year, 3-year, and 5-year models). For the tumor segmentation model, 439 cases of intramedullary tumors were used to model training and testing using a transfer learning strategy. A total of 138 patients diagnosed with astrocytomas were included to train and test the OS prediction models via 10 × 10-fold cross-validation using CNNs.The dice of the tumor segmentation model with the test set was 0.852. The results indicated that the best input of OS prediction models was a combination of T2W and T1C images and the tumor mask. The 1-year, 3-year, and 5-year automated OS prediction models achieved accuracies of 86.0%, 84.0%, and 88.0% and AUCs of 0.881 (95% CI 0.839-0.918), 0.862 (95% CI 0.827-0.901), and 0.905 (95% CI 0.867-0.942), respectively. The automated DL pipeline achieved 4-class OS prediction (<1 year, 1-3 years, 3-5 years, and >5 years) with 75.3% accuracy.We proposed an automated DL pipeline for segmenting spinal cord astrocytomas and stratifying OS based on preoperative MR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的渊思完成签到,获得积分10
刚刚
和谐小南完成签到,获得积分10
3秒前
湛湛完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
优秀盼波完成签到,获得积分10
6秒前
善学以致用应助lp采纳,获得10
6秒前
桐桐应助夏天采纳,获得10
7秒前
彭鱼晏发布了新的文献求助30
7秒前
NexusExplorer应助fanfan采纳,获得10
7秒前
Yolo发布了新的文献求助10
7秒前
Beautieat1完成签到,获得积分10
7秒前
lili完成签到,获得积分10
7秒前
xuxuxuxu完成签到,获得积分10
8秒前
9秒前
肥仔发布了新的文献求助10
9秒前
9秒前
shadowj1020发布了新的文献求助30
10秒前
Ava应助无心的天真采纳,获得10
10秒前
风不尽,树不静完成签到,获得积分10
11秒前
Zzkai完成签到,获得积分10
11秒前
第二个账号完成签到 ,获得积分10
11秒前
情怀应助明理的南风采纳,获得10
12秒前
13秒前
故事完成签到,获得积分10
13秒前
democienceek发布了新的文献求助10
13秒前
14秒前
顾矜应助ajinjin采纳,获得10
14秒前
明亮发布了新的文献求助10
16秒前
大大完成签到 ,获得积分10
16秒前
小唐完成签到,获得积分10
16秒前
Hey发布了新的文献求助10
18秒前
百里瓶窑完成签到,获得积分10
19秒前
19秒前
宏韬完成签到,获得积分10
20秒前
21秒前
糊涂的保温杯完成签到,获得积分10
21秒前
科研通AI6应助君莫惜采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 1000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4436255
求助须知:如何正确求助?哪些是违规求助? 3910653
关于积分的说明 12145535
捐赠科研通 3556883
什么是DOI,文献DOI怎么找? 1952239
邀请新用户注册赠送积分活动 992337
科研通“疑难数据库(出版商)”最低求助积分说明 887900