Algorithmic Precision and Human Decision: A Study of Interactive Optimization for School Schedules

作者
Arthur Delarue,Zhen Lian,Sébastien Martin
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:72 (1): 148-166
标识
DOI:10.1287/mnsc.2024.05834
摘要

In collaboration with the San Francisco Unified School District (SFUSD), this paper introduces an interactive optimization framework to tackle complex school scheduling challenges. The choice of school start and end times is an optimization challenge, as schedules influence the district’s transportation system, and limiting the associated costs is a computationally difficult combinatorial problem. However, it is also a policy challenge, as transportation costs are far from the only consequence of school schedule changes. Policymakers need time and knowledge to balance these considerations and reach a consensus carefully; past implementations have failed because of policy issues, despite state-of-the-art optimization approaches. We first motivate our approach with a microfoundation model of the interplay between policymakers and researchers, arguing that limiting their dependency is key. Building on these insights, we propose a framework that includes (1) a fast algorithm capable of solving the school schedule problem that compares favorably to the literature and (2) an interactive optimization approach that leverages this speed to allow policymakers to explore a variety of solutions in a transparent and efficient way, facilitating the policy decision-making process. The framework led to the first optimization-driven school start time changes in the United States, updating the schedule of all 133 schools in SFUSD in 2021, with annual transportation savings exceeding $5 million. A comprehensive survey of approximately 27,000 parents and staff in 2022 provides evidence of the approach’s effectiveness. This paper was accepted by Felipe Caro, Special Issue on the Human-Algorithm Connection. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2024.05834 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suzy-123发布了新的文献求助30
刚刚
正好完成签到,获得积分10
1秒前
1秒前
思源应助何必在乎采纳,获得10
1秒前
暖晴完成签到,获得积分10
2秒前
常常完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
ding应助刘英岑采纳,获得10
5秒前
6秒前
jerry_x完成签到,获得积分10
7秒前
啦啦啦发布了新的文献求助10
8秒前
9秒前
sct发布了新的文献求助10
9秒前
maerray完成签到 ,获得积分10
9秒前
科研通AI6应助天真凡灵采纳,获得10
10秒前
11秒前
橙子发布了新的文献求助10
11秒前
12秒前
刘英岑完成签到,获得积分10
13秒前
爱笑的山灵完成签到,获得积分10
13秒前
云渺发布了新的文献求助10
14秒前
彩色的灯光完成签到,获得积分10
15秒前
15秒前
15秒前
森距离发布了新的文献求助10
16秒前
王蕾发布了新的文献求助10
16秒前
进击的PhD应助魁梧的笑珊采纳,获得20
16秒前
17秒前
不想看文献完成签到,获得积分10
17秒前
17秒前
277发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
田様应助李建恩采纳,获得10
20秒前
桐桐应助天使睿宝包采纳,获得10
20秒前
虚幻的雪巧完成签到,获得积分10
20秒前
星星发布了新的文献求助10
21秒前
云渺完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642999
求助须知:如何正确求助?哪些是违规求助? 4760428
关于积分的说明 15019750
捐赠科研通 4801483
什么是DOI,文献DOI怎么找? 2566801
邀请新用户注册赠送积分活动 1524658
关于科研通互助平台的介绍 1484255