Integration of Transfer Learning and Multitask Learning To Predict the Potential of Per/Polyfluoroalkyl Substances in Activating Multiple Nuclear Receptors Associated with Hepatic Lipotoxicity

脂毒性 学习迁移 核受体 受体 化学 计算机科学 人工智能 医学 内科学 生物化学 胰岛素抵抗 胰岛素 转录因子 基因
作者
Rouyi Wang,Shujun Yi,Guoqiang Shan,Lingyan Zhu
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.5c07895
摘要

Per/polyfluoroalkyl substances (PFAS) can induce hepatic lipotoxicity by activating nuclear receptors (NRs). Here, we first developed machine-learning models to predict activities of PFAS toward five NRs related to hepatic lipotoxicity using five conventional algorithms based on three commonly used data sets: a general chemical data set (A-data set, including 6388-10199 compounds), a broad PFAS data set based on OECD definition (B-data set, including 369-772 compounds), and a strictly defined PFAS data set (C-data set, including 184-198 compounds). Unexpectedly, the models trained on the broad chemical spaces (A- and B-data sets) showed weak identification of active PFAS, which might be due to distributional shifts. The C-data set-trained models exhibited the best identification performance, but with weaker discrimination than A-data set-trained models. There herein, a transfer-learning multitask deep neural network (TL-MT-DNN) was implemented to transfer knowledge from the A-data set to the C-data set, which greatly improved the prediction performance with an average AUC of 0.886 and F1 of 0.665. Applying this model to 3716 PFAS from the PFASSTRUCTv5 database, 391 compounds were predicted to activate all the five NRs. The model's prediction reliability was validated by in vitro cell-based assays and in vivo animal experiments. This study provides a modeling strategy to improve PFAS activity prediction, overcoming the distributional shift inherent in models trained on broad chemical spaces, and highlights its potential for practical application in risk screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pumpkin完成签到,获得积分20
刚刚
刚刚
刚刚
万能图书馆应助wxh16403采纳,获得10
刚刚
复杂平凡完成签到,获得积分10
1秒前
1秒前
CipherSage应助cc采纳,获得10
2秒前
2秒前
张强完成签到,获得积分10
2秒前
2秒前
Hello应助taiping采纳,获得10
2秒前
2秒前
DDhappy发布了新的文献求助10
3秒前
23发布了新的文献求助10
3秒前
俏皮道之完成签到,获得积分10
3秒前
4秒前
MichaelMu完成签到,获得积分10
4秒前
科研通AI5应助小乖采纳,获得10
4秒前
xxvvxx发布了新的文献求助10
4秒前
君夕扬完成签到,获得积分10
5秒前
5秒前
蒙蒙完成签到,获得积分10
5秒前
可爱的函函应助二水采纳,获得10
5秒前
Ty_1029发布了新的文献求助10
6秒前
陈总002完成签到,获得积分10
6秒前
真实的芫完成签到,获得积分10
6秒前
赵子迪完成签到,获得积分10
6秒前
简单发布了新的文献求助10
7秒前
xiyue发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
chenkui完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助30
10秒前
遇见完成签到,获得积分20
10秒前
陌小千完成签到 ,获得积分10
11秒前
小新应助树酱采纳,获得10
11秒前
小蘑菇应助chen采纳,获得10
11秒前
wanci应助阿洁采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097755
求助须知:如何正确求助?哪些是违规求助? 4310219
关于积分的说明 13429598
捐赠科研通 4137626
什么是DOI,文献DOI怎么找? 2266787
邀请新用户注册赠送积分活动 1269912
关于科研通互助平台的介绍 1206205