Aging in lithium-ion batteries (LIBs) degrades the performance and hinders sustainability, demanding advanced diagnostics for early failure prediction. We investigate lithium isotope fractionation (LIF) as an innovative probe of degradation in lithium cobalt oxide (LCO) coin cells aged over 0−700 cycles. High-precision multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) quantified δ7Li variations across key cell stages: non-cycled (0 cycles), newly formed (5 cycles), semi-aged (250 cycles), and fully aged (700 cycles). During early cycling (≤ 45 cycles), chemical processes drive 7Li enrichment at the anode (δ7Li vs LSVEC = +12 ‰) through solid electrolyte interphase (SEI) formation, while the cathode depletes in 7Li (δ7Li vs LSVEC = − 0.7 ‰). Beyond 45 cycles, electric field-induced migration predominates, promoting 6Li intercalation into the anode and increasing the δ7Li of the cathode by 8.1 ‰. Mass balance verifies isotope conservation, attributing shifts to lithium redistribution and trapping. Complementary electrochemical impedance spectroscopy (EIS) and X-ray absorption spectroscopy and diffraction confirm SEI expansion, cobalt oxidation, lattice shrinkage, and changes in the electrode structure, corroborating LIF trends. Notably, a δ7Li inflection at approximately 270 cycles anticipates end-of-life by 70 cycles, surpassing traditional methods in sensitivity. LIF emerges as a predictive indicator of aging mechanisms, informing optimized designs for durable LIBs.