清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Composition-based aluminum alloy selection using an artificial neural network

材料科学 电负性 人工神经网络 材料选择 反向 合金 选择(遗传算法) 材料性能 计算机科学 结构工程 人工智能 复合材料 工程类 数学 几何学 物理 量子力学
作者
Jaka Fajar Fatriansyah,Raihan Kenji Rizqillah,Iping Suhariadi,Andreas Federico,Ade Kurniawan
出处
期刊:Modelling and Simulation in Materials Science and Engineering [IOP Publishing]
卷期号:31 (5): 055011-055011 被引量:9
标识
DOI:10.1088/1361-651x/acda4e
摘要

Abstract Materials selection for aluminum alloys with desired fatigue properties and other mechanical properties is very difficult. Usually, when fatigue properties are maximized, other mechanical properties should be compromised. In this paper, an artificial neural network, was utilized to build two prediction models that has the purpose of predicting fatigue life from composition and inverse design to predict composition from fatigue properties as a tool for materials selection. A first model was built to predict fatigue life using information on alloy composition, heat treatment, and other mechanical properties. The second model is an inversion of the first model, which predicts the material compositions to get the desired fatigue performance and other mechanical properties. Both models produce good performances based on the R 2 scoring metric, where the values were found to be 0.92 and 0.96 for the first and second models, respectively. This study proved that the inversion model for predicting composition based on fatigue properties can reach acceptable accuracy and can be used as a materials selection tool. In addition, to investigate how atomic properties can affect fatigue life, the third model was built. It was found that atomic properties, such as electronegativity and the radius of alloying elements, are closely related to fatigue life and can be used to predict fatigue life as well. The significance of our work is that users can design new alloys for specific applications as well as select available alloys based on fatigue property criteria.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
天玄发布了新的文献求助10
7秒前
18秒前
糟糕的翅膀完成签到,获得积分10
31秒前
cy0824完成签到 ,获得积分10
51秒前
52秒前
披着羊皮的狼完成签到 ,获得积分10
52秒前
55秒前
天玄发布了新的文献求助10
57秒前
1分钟前
无悔完成签到 ,获得积分10
1分钟前
迷茫的一代完成签到,获得积分10
1分钟前
1分钟前
天玄发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
wzbc完成签到,获得积分10
2分钟前
2分钟前
2分钟前
南寅完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
muriel完成签到,获得积分0
4分钟前
4分钟前
如歌完成签到,获得积分10
4分钟前
5分钟前
走啊走完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
cheryjay发布了新的文献求助10
5分钟前
wen完成签到,获得积分10
5分钟前
刘刘完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624