Room temperature colossal superparamagnetic order in aminoferrocene–graphene molecular magnets

石墨烯 材料科学 超顺磁性 拉曼光谱 磁晶各向异性 化学物理 石墨烯 石墨烯纳米带 密度泛函理论 纳米技术 磁化 凝聚态物理 磁各向异性 计算化学 化学 磁场 物理 光学 量子力学
作者
Yohannes W. Getahun,Felicia Manciu,Mark R. Pederson,Ahmed A. El-Gendy
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:122 (24) 被引量:2
标识
DOI:10.1063/5.0153212
摘要

Intensive studies are published for graphene-based molecular magnets due to their remarkable electric, thermal, and mechanical properties. However, to date, most of all produced molecular magnets are ligand based and subject to challenges regarding the stability of the ligand(s). The lack of long-range coupling limits high operating temperature and leads to a short-range magnetic order. Herein, we introduce an aminoferrocene-based graphene system with room temperature superparamagnetic behavior in the long-range magnetic order that exhibits colossal magnetocrystalline anisotropy of 8 × 105 and 3 × 107 J/m3 in aminoferrocene and graphene-based aminoferrocene, respectively. These values are comparable to and even two orders of magnitude larger than pure iron metal. Aminoferrocene [C10H11FeN]+ is synthesized by an electrophilic substitution reaction. It was then reacted with graphene oxide that was prepared by the modified Hammers method. The phase structure and functionalization of surface groups were characterized and confirmed by XRD, FT-IR, and Raman spectroscopy. To model the behavior of the aminoferrocene between two sheets of hydroxylated graphene, we have used density functional theory by placing the aminoferrocene molecule between two highly ordered hydroxylated sheets and allowing the structure to relax. The strong bowing of the isolated graphene sheets suggests that the charge transfer and resulting magnetization could be strongly influenced by pressure effects. In contrast to strategies based on ligands surface attachment, our present work that uses interlayer intercalated aminoferrocene opens routes for future molecular magnets as well as the design of qubit arrays and quantum systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzhu完成签到,获得积分10
刚刚
1秒前
酷波er应助WeiYang采纳,获得10
2秒前
科研通AI5应助geold采纳,获得10
2秒前
贝儿完成签到,获得积分10
2秒前
glj关闭了glj文献求助
3秒前
Lina发布了新的文献求助10
3秒前
Owen应助科研通管家采纳,获得10
4秒前
kingwill应助科研通管家采纳,获得20
4秒前
iNk应助科研通管家采纳,获得20
4秒前
iNk应助科研通管家采纳,获得20
5秒前
所所应助收声采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
甜甜玫瑰应助Augenstern采纳,获得10
5秒前
upupup应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
flame应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助断章采纳,获得10
6秒前
洪七公完成签到,获得积分10
6秒前
7秒前
7秒前
星辰大海应助qwer1234采纳,获得10
10秒前
学白柒发布了新的文献求助20
10秒前
10秒前
大菊发布了新的文献求助10
10秒前
张医生完成签到,获得积分10
10秒前
11秒前
冷月芳华发布了新的文献求助10
11秒前
carbonhan完成签到,获得积分10
11秒前
慕青应助Ab采纳,获得30
11秒前
干净山彤发布了新的文献求助10
12秒前
ding应助大气的天蓝采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793698
求助须知:如何正确求助?哪些是违规求助? 3338599
关于积分的说明 10290546
捐赠科研通 3055010
什么是DOI,文献DOI怎么找? 1676285
邀请新用户注册赠送积分活动 804326
科研通“疑难数据库(出版商)”最低求助积分说明 761836