An Efficient Latent Style Guided Transformer-CNN Framework for Face Super-Resolution

计算机科学 人工智能 变压器 地点 模式识别(心理学) 计算机视觉 特征提取 电压 语言学 量子力学 物理 哲学
作者
Haoran Qi,Yuwei Qiu,Xing Luo,Zhi Jin
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1589-1599 被引量:9
标识
DOI:10.1109/tmm.2023.3283856
摘要

In the Face Super-Resolution (FSR) task, it is important to precisely recover facial textures while maintaining facial contours for realistic high resolution faces. Although several CNN-based FSR methods have achieved great performance, they fail in restoring the facial contours due to the limitation of local convolutions. In contrast, Transformer-based methods which use self-attention as the basic component, are expert in modeling long-range dependencies between image patches. However, learning long-range dependencies often deteriorates facial textures due to the lack of locality. Therefore, a question is naturally raised: how to effectively combine the superiority of CNN and Transformer for better reconstructing faces? To address this issue, we propose an Efficient Latent Style guided Transformer-CNN framework for FSR called ELSFace , which can sufficiently integrate the advantages of CNN and Transformer. The framework consists of a Feature Preparation Stage and a Feature Carving Stage. Basic facial contours and textures are generated in the Feature Preparation Stage, and separately guided by latent styles, so that facial details are better represented in reconstruction. CNN and Transformer streams in the Feature Carving Stage are used to individually restore facial textures and facial contours, respectively in a parallel recursive way. Considering the negligence of high-frequency features when learning the long-range dependencies, we design the High-Frequency Enhancement Block (HFEB) in the Transformer stream. The Sharp Loss is also proposed for better perceptual quality in optimization. Extensive experimental results demonstrate that our ELSFace can achieve the best results among all metrics compared to the state-of-the-art CNN and Transformer-based methods on commonly used datasets and real-world tasks. Meanwhile, our ELSFace method has the least model parameters and running time. The codes are released at https://github.com/FVL2020/ELSFace .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nuonuo完成签到,获得积分20
3秒前
科研通AI5应助猩心采纳,获得10
6秒前
8秒前
十一发布了新的文献求助10
10秒前
10秒前
13秒前
14秒前
Pendragon发布了新的文献求助10
14秒前
xinyao完成签到,获得积分10
15秒前
不吃西瓜发布了新的文献求助10
15秒前
内啡呔完成签到,获得积分20
16秒前
ll61发布了新的文献求助20
17秒前
海藻发布了新的文献求助10
18秒前
xinyao发布了新的文献求助10
19秒前
影子完成签到,获得积分10
20秒前
852应助Pendragon采纳,获得10
20秒前
李苗苗发布了新的文献求助10
21秒前
21秒前
繁荣完成签到,获得积分10
22秒前
LioXH完成签到 ,获得积分10
23秒前
从容襄完成签到,获得积分10
24秒前
24秒前
王彧琦发布了新的文献求助10
27秒前
薛妖怪完成签到,获得积分10
28秒前
28秒前
猩心发布了新的文献求助10
31秒前
香香甜甜发布了新的文献求助20
32秒前
32秒前
32秒前
汉堡包应助内啡呔采纳,获得10
32秒前
32秒前
33秒前
今后应助王路飞采纳,获得10
34秒前
脓毒症发布了新的文献求助10
36秒前
薛妖怪发布了新的文献求助10
37秒前
一帆风顺发布了新的文献求助30
37秒前
肖恩发布了新的文献求助10
38秒前
邓邓完成签到 ,获得积分10
38秒前
jhcdgszjdcb发布了新的文献求助10
38秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
中国新能源电池回收利用产业发展报告(2024) 400
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842966
求助须知:如何正确求助?哪些是违规求助? 3385020
关于积分的说明 10538533
捐赠科研通 3105563
什么是DOI,文献DOI怎么找? 1710459
邀请新用户注册赠送积分活动 823636
科研通“疑难数据库(出版商)”最低求助积分说明 774170