An Efficient Latent Style Guided Transformer-CNN Framework for Face Super-Resolution

计算机科学 人工智能 变压器 地点 模式识别(心理学) 计算机视觉 特征提取 电压 语言学 量子力学 物理 哲学
作者
Haoran Qi,Yuwei Qiu,Xing Luo,Zhi Jin
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1589-1599 被引量:12
标识
DOI:10.1109/tmm.2023.3283856
摘要

In the Face Super-Resolution (FSR) task, it is important to precisely recover facial textures while maintaining facial contours for realistic high resolution faces. Although several CNN-based FSR methods have achieved great performance, they fail in restoring the facial contours due to the limitation of local convolutions. In contrast, Transformer-based methods which use self-attention as the basic component, are expert in modeling long-range dependencies between image patches. However, learning long-range dependencies often deteriorates facial textures due to the lack of locality. Therefore, a question is naturally raised: how to effectively combine the superiority of CNN and Transformer for better reconstructing faces? To address this issue, we propose an Efficient Latent Style guided Transformer-CNN framework for FSR called ELSFace , which can sufficiently integrate the advantages of CNN and Transformer. The framework consists of a Feature Preparation Stage and a Feature Carving Stage. Basic facial contours and textures are generated in the Feature Preparation Stage, and separately guided by latent styles, so that facial details are better represented in reconstruction. CNN and Transformer streams in the Feature Carving Stage are used to individually restore facial textures and facial contours, respectively in a parallel recursive way. Considering the negligence of high-frequency features when learning the long-range dependencies, we design the High-Frequency Enhancement Block (HFEB) in the Transformer stream. The Sharp Loss is also proposed for better perceptual quality in optimization. Extensive experimental results demonstrate that our ELSFace can achieve the best results among all metrics compared to the state-of-the-art CNN and Transformer-based methods on commonly used datasets and real-world tasks. Meanwhile, our ELSFace method has the least model parameters and running time. The codes are released at https://github.com/FVL2020/ELSFace .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
fanghao发布了新的文献求助10
1秒前
FashionBoy应助老木虫采纳,获得10
1秒前
完美梨愁发布了新的文献求助10
1秒前
LYY发布了新的文献求助30
2秒前
2秒前
3秒前
可爱的函函应助彩色夜山采纳,获得10
3秒前
Ava应助zx采纳,获得10
3秒前
4秒前
4秒前
萧凡灵完成签到,获得积分10
4秒前
yaozhengjie完成签到,获得积分10
4秒前
呓语发布了新的文献求助10
5秒前
郑森友发布了新的文献求助20
5秒前
5秒前
6秒前
raner发布了新的文献求助10
6秒前
甜甜的满天完成签到,获得积分10
6秒前
天真的南露完成签到 ,获得积分10
6秒前
6秒前
ShiyaoWang发布了新的文献求助10
6秒前
7秒前
7秒前
明明亮亮发布了新的文献求助10
7秒前
sugar完成签到,获得积分10
7秒前
清脆的真完成签到,获得积分10
7秒前
Y.J发布了新的文献求助10
7秒前
仁爱的思雁完成签到,获得积分10
8秒前
8秒前
9秒前
搜大有完成签到,获得积分10
9秒前
Rear21完成签到,获得积分10
9秒前
sxb10101应助Jupiter 1234采纳,获得10
9秒前
YifanWang应助Jupiter 1234采纳,获得10
9秒前
10秒前
10秒前
搜集达人应助cony采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805195
求助须知:如何正确求助?哪些是违规求助? 5848012
关于积分的说明 15515402
捐赠科研通 4930468
什么是DOI,文献DOI怎么找? 2654642
邀请新用户注册赠送积分活动 1601437
关于科研通互助平台的介绍 1556419