UAV Remote-Sensing Image Semantic Segmentation Strategy Based on Thermal Infrared and Multispectral Image Features

计算机科学 人工智能 多光谱图像 分割 稳健性(进化) 遥感 图像分割 计算机视觉 航空影像 深度学习 模式识别(心理学) 地理 生物化学 基因 化学
作者
Pakezhamu Nuradili,Ji Zhou,Xiangbing Zhou,Jin Ma,Ziwei Wang,Lingxuan Meng,Wenbin Tang,Yizhen Meng
出处
期刊:IEEE journal on miniaturization for air and space systems [Institute of Electrical and Electronics Engineers]
卷期号:4 (3): 311-319
标识
DOI:10.1109/jmass.2023.3286418
摘要

The availability of high-resolution imagery resources for semantic segmentation research has expanded significantly due to the rapid development of remote-sensing technology utilizing unmanned aerial vehicles (UAVs). These images provide researchers with a more accurate view of the region of interest and allow for more detailed analysis and interpretation of the images. However, semantic segmentation based on UAV remote-sensing imagery still faces new challenges in deriving ground objects. In contrast to the commonly used multispectral (MS) imagery, thermal infrared (TIR) imagery can record the emission of ground objects, making the temperature characteristics of TIR imagery and the color characteristics of MS imagery complementary. These two approaches can be used synergistically to provide more comprehensive image information. On this basis, we propose a strategy for semantic segmentation of UAV images by utilizing both TIR and MS image features. The approach combines principal component analysis (PCA) transformation with a deep learning semantic segmentation network, namely, Deeplv3. The effectiveness of the proposed strategy is evaluated by comparing it with both traditional supervised classification algorithms and deep learning algorithms. According to the results, the proposed strategy exhibits greater robustness, achieving a mean pixel accuracy (MPA) of 92.8% and a mean intersection over union (MIOU) of 73.5%. These results outperform several classical deep learning semantic segmentation algorithms that were also evaluated. The proposed strategy would be beneficial to promote the development of semantic segmentation technology for UAV remote-sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NorthWang完成签到,获得积分10
1秒前
chenmeimei2012完成签到 ,获得积分10
1秒前
4秒前
ally完成签到,获得积分10
4秒前
nature完成签到,获得积分10
6秒前
Fanfan完成签到 ,获得积分10
6秒前
Kai完成签到,获得积分10
7秒前
Wguan完成签到,获得积分10
8秒前
聪慧的凝海完成签到 ,获得积分0
8秒前
高豪英发布了新的文献求助10
9秒前
無期完成签到 ,获得积分10
9秒前
Dream完成签到,获得积分0
13秒前
高豪英完成签到,获得积分10
16秒前
不吃芹菜完成签到,获得积分10
21秒前
羊白玉完成签到 ,获得积分10
21秒前
世上僅有的榮光之路完成签到,获得积分0
24秒前
klicking完成签到,获得积分10
28秒前
饱满的新之完成签到 ,获得积分10
29秒前
lizhiqian2024发布了新的文献求助10
31秒前
怡然猎豹完成签到,获得积分10
33秒前
magic完成签到,获得积分10
33秒前
34秒前
Mandy完成签到,获得积分10
39秒前
李李原上草完成签到 ,获得积分10
40秒前
七月完成签到,获得积分10
41秒前
42秒前
欣喜的缘分完成签到 ,获得积分10
46秒前
lizhiqian2024发布了新的文献求助10
47秒前
黄金天下完成签到,获得积分10
50秒前
浮尘完成签到 ,获得积分0
52秒前
当女遇到乔完成签到 ,获得积分10
52秒前
沉甸甸完成签到,获得积分10
54秒前
娇气的天亦完成签到,获得积分10
57秒前
小伍同学完成签到,获得积分10
1分钟前
SciGPT应助fw20210085采纳,获得10
1分钟前
冷酷的啤酒完成签到,获得积分10
1分钟前
干净思远完成签到,获得积分10
1分钟前
bc应助lizhiqian2024采纳,获得10
1分钟前
lailai完成签到 ,获得积分10
1分钟前
大力小玉完成签到 ,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800999
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329619
捐赠科研通 3063070
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726