MCT4-dependent lactate transport: a novel mechanism for cardiac energy metabolism injury and inflammation in type 2 diabetes mellitus

医学 炎症 糖酵解 糖尿病 2型糖尿病 糖尿病性心肌病 氧化应激 内科学 发病机制 2型糖尿病 葡萄糖转运蛋白 内分泌学 心力衰竭 心肌病 胰岛素 新陈代谢
作者
Xiu Mei,Kang Geng,Peng Wang,Zongzhe Jiang,Betty Yuen Kwan Law,Yong Xu
出处
期刊:Cardiovascular Diabetology [BioMed Central]
卷期号:23 (1) 被引量:3
标识
DOI:10.1186/s12933-024-02178-2
摘要

Abstract Diabetic cardiomyopathy (DCM) is a major contributor to mortality in diabetic patients, characterized by a multifaceted pathogenesis and limited therapeutic options. While lactate, a byproduct of glycolysis, is known to be significantly elevated in type 2 diabetes, its specific role in DCM remains uncertain. This study reveals an abnormal upregulation of monocarboxylate transporter 4 (MCT4) on the plasma membrane of cardiomyocytes in type 2 diabetes, leading to excessive lactate efflux from these cells. The disruption in lactate transport homeostasis perturbs the intracellular lactate-pyruvate balance in cardiomyocytes, resulting in oxidative stress and inflammatory responses that exacerbate myocardial damage. Additionally, our findings suggest increased lactate efflux augments histone H4K12 lactylation in macrophages, facilitating inflammatory infiltration within the microenvironment. In vivo experiments have demonstrated that inhibiting MCT4 effectively alleviates myocardial oxidative stress and pathological damage, reduces inflammatory macrophage infiltration, and enhances cardiac function in type 2 diabetic mice. Furthermore, a clinical prediction model has been established, demonstrating a notable association between peripheral blood lactate levels and diastolic dysfunction in individuals with type 2 diabetes. This underscores the potential of lactate as a prognostic biomarker for DCM. Ultimately, our findings highlight the pivotal involvement of MCT4 in the dysregulation of cardiac energy metabolism and macrophage-mediated inflammation in type 2 diabetes. These insights offer novel perspectives on the pathogenesis of DCM and pave the way for the development of targeted therapeutic strategies against this debilitating condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
的墨完成签到,获得积分10
2秒前
2秒前
Ab发布了新的文献求助10
2秒前
独一无二发布了新的文献求助10
3秒前
pluto应助氢氧化钠Li采纳,获得20
3秒前
欧阳发布了新的文献求助10
4秒前
妮妮发布了新的文献求助10
4秒前
田様应助lx采纳,获得10
5秒前
5秒前
迷人若冰完成签到,获得积分10
5秒前
6秒前
Minh23完成签到,获得积分10
8秒前
儒雅的夏山完成签到 ,获得积分10
8秒前
9秒前
Owen应助明理的尔蓝采纳,获得10
10秒前
研友_VZG7GZ应助邹随阴采纳,获得10
11秒前
Orange应助galeno采纳,获得10
11秒前
科研通AI5应助ncjdoi采纳,获得10
11秒前
阿树发布了新的文献求助10
11秒前
Minh23发布了新的文献求助100
12秒前
MAKEYF完成签到,获得积分10
12秒前
13秒前
马文杰完成签到,获得积分10
13秒前
SK完成签到,获得积分10
14秒前
guaishou发布了新的文献求助10
14秒前
15秒前
逍遥发布了新的文献求助10
16秒前
SK发布了新的文献求助10
16秒前
16秒前
Hello应助妮妮采纳,获得10
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
高高冰蝶应助小荔枝采纳,获得10
19秒前
万能图书馆应助阿树采纳,获得10
20秒前
核桃发布了新的文献求助10
21秒前
dccfv关注了科研通微信公众号
21秒前
molo发布了新的文献求助10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784418
求助须知:如何正确求助?哪些是违规求助? 3329484
关于积分的说明 10242453
捐赠科研通 3044982
什么是DOI,文献DOI怎么找? 1671481
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759372