Improving Convective Cloud Classification with Deep Learning: The CC-Unet Model

云计算 对流 计算机科学 环境科学 气象学 地理 操作系统
作者
Humuntal Rumapea,Mohammad Zarlis,Syahril Efendy,Poltak Sihombing
出处
期刊:International Journal on Advanced Science, Engineering and Information Technology [Insight Society]
卷期号:14 (1): 28-36 被引量:5
标识
DOI:10.18517/ijaseit.14.1.18658
摘要

Analyzing and mitigating natural disasters can be a challenging task, which is why the field of computer science, specifically artificial intelligence (AI) is necessary to aid in the complexity of disaster management. AI provides the tools and analytical models to help solve the intricacies of handling natural disasters. Convective clouds, closely related to rain and can lead to large-scale, prolonged hydrometeorological disasters, are a crucial component to consider. To improve the classification of these clouds, a predictive-analytical model based on deep learning, called the CC-Unet model, was developed. This model utilizes a U-Net architecture and is trained using a dataset of convective cloud images. The researchers used satellite image data from the Himawari 8 satellite collected in May and October 2021. The images were pre-processed and verified using observational data. The model was tested using a random train-test split method, showing that the CC-Unet model had a higher accuracy of 97.29% compared to the U-Net model, which had an accuracy of 94.17%. Additionally, the significance test using the Wilcoxon method showed that the CC-Unet model had significantly different performance results from the U-Net model. The ground truth image was also compared with the predicted image, showing a low root mean square error value of 0.0218, indicating a high level of similarity between the two. Overall, this research demonstrates the potential of AI and deep learning in classifying convective clouds to aid in natural disaster management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助blackhawkwu采纳,获得30
刚刚
龙仔子完成签到 ,获得积分10
刚刚
完美世界应助清爽馒头采纳,获得30
刚刚
菜小芽完成签到 ,获得积分10
1秒前
复杂缘分发布了新的文献求助10
1秒前
陈化十完成签到,获得积分20
1秒前
乐乐完成签到,获得积分10
1秒前
魔芋小心完成签到 ,获得积分20
2秒前
Maestro_S应助崔博采纳,获得10
2秒前
无花果应助时丶倾采纳,获得10
3秒前
大头发布了新的文献求助10
3秒前
Stella应助灵泽采纳,获得10
4秒前
5秒前
mokmok完成签到,获得积分10
5秒前
深情安青应助Lucifer采纳,获得30
5秒前
不安谷冬完成签到 ,获得积分10
6秒前
7秒前
8秒前
SciGPT应助Charles采纳,获得10
8秒前
9秒前
11秒前
Soopver发布了新的文献求助10
11秒前
高高羊完成签到,获得积分20
11秒前
12秒前
酷波er应助Origin采纳,获得10
14秒前
科研通AI6应助粉鼻子采纳,获得10
14秒前
irenelijiaaa发布了新的文献求助10
14秒前
酷波er应助kaiX采纳,获得30
14秒前
shanshan完成签到 ,获得积分10
15秒前
华仔应助小马哥采纳,获得10
16秒前
16秒前
科研通AI6应助zmx采纳,获得10
16秒前
领导范儿应助无限的老虎采纳,获得30
16秒前
科研通AI2S应助赵晓辉采纳,获得30
16秒前
17秒前
17秒前
浮游应助忧郁的灵枫采纳,获得10
18秒前
浮游应助忧郁的灵枫采纳,获得10
18秒前
eric888应助忧郁的灵枫采纳,获得100
18秒前
浮游应助忧郁的灵枫采纳,获得10
18秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339665
求助须知:如何正确求助?哪些是违规求助? 4476410
关于积分的说明 13931491
捐赠科研通 4371956
什么是DOI,文献DOI怎么找? 2402218
邀请新用户注册赠送积分活动 1395083
关于科研通互助平台的介绍 1367077