纳米
纳米颗粒
离解(化学)
电化学
纳米技术
纳米尺度
催化作用
原位
分子动力学
电催化剂
材料科学
配体(生物化学)
拉曼光谱
化学
化学物理
电极
计算化学
物理化学
受体
光学
有机化学
物理
复合材料
生物化学
作者
Yu Shan,Xiao Zhao,Maria Fonseca Guzman,Asmita Jana,Shouping Chen,Sunmoon Yu,Ka Chon Ng,Inwhan Roh,Hao Chen,M. Virginia P. Altoé,Stephanie N. Gilbert Corder,Hans A. Bechtel,Jin Qian,Miquel Salmerón,Peidong Yang
出处
期刊:Nature Catalysis
[Springer Nature]
日期:2024-03-25
卷期号:7 (4): 422-431
被引量:43
标识
DOI:10.1038/s41929-024-01119-2
摘要
The dynamic response of surface ligands on nanoparticles (NPs) to external stimuli critically determines the functionality of NP–ligand systems. For example, in electrocatalysis the collective dissociation of ligands on NP surfaces can lead to the creation of an NP/ordered-ligand interlayer, a microenvironment that is highly active and selective for CO<sub>2</sub>-to-CO conversion. However, the lack of in situ characterization techniques with high spatial resolution hampers a comprehensive molecular-level understanding of the mechanism of interlayer formation. Here, in this work, we utilize in situ infrared nanospectroscopy and surface-enhanced Raman spectroscopy, unveiling an electrochemical bias-induced consecutive bond cleavage mechanism of surface ligands leading to formation of the NP/ordered-ligand interlayer. This real-time molecular insight could influence the design of confined localized fields in multiple catalytic systems. Moreover, the demonstrated capability of capturing nanometre-resolved, dynamic molecular-scale events holds promise for the advancement of using controlled local molecular behaviour to achieve desired functionalities across multiple research domains in nanoscience.
科研通智能强力驱动
Strongly Powered by AbleSci AI