已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparing the performance of global, geographically weighted and ecologically weighted species distribution models for Scottish wildcats using GLM and Random Forest predictive modeling

随机森林 统计 广义线性模型 分布(数学) 生态学 地理 数学 环境科学 计量经济学 计算机科学 生物 人工智能 数学分析
作者
Samuel A. Cushman,Kerry Kilshaw,Richard D. Campbell,Żaneta Kaszta,Martin J. Gaywood,David W. Macdonald
出处
期刊:Ecological Modelling [Elsevier]
卷期号:492: 110691-110691 被引量:5
标识
DOI:10.1016/j.ecolmodel.2024.110691
摘要

Species distribution modeling has emerged as a foundational method to predict occurrence and suitability of species in relation to environmental variables to advance ecological understanding and guide conservation planning. Recent research, however, has shown that species-environmental relationships and habitat model predictions are often nonstationary in space, time and ecological context. This calls into question modeling approaches that assume a global, stationary ecological realized niche and use predictive modeling to describe it. This paper explores this issue by comparing the performance of predictive models for wildcat hybrid occurrence based on (1) global pooled data across individuals, (2) geographically weighted aggregation of individual models, (3) ecologically weighted aggregation of individual models, and (4) combinations of global, geographical and ecological weighting. Our study system included GPS telemetry data from 14 individual wildcat hybrids across Scotland. We developed predictive models both using Generalized Linear Models (GLM) and Random Forest machine learning to compare the performance of these differing algorithms and how they compare in stationary and nonstationary analyses. We validated the predicted models in four different ways. First, we used independent hold-out data from the 14 collared wildcat hybrids. Second, we used data from 8 additional GPS collared wildcat hybrids from a previous study that were not included in the training sample. Third, we used sightings data sent in by the public and researchers and validated by expert opinion. Fourth, we used data collected by camera trap surveys between 2012 – 2021 from various sources to produce a combined camera trap dataset showing where wildcats and wildcat hybrids had been detected. Our results show that validation using hold-out data from the individuals used to train the model provides highly biased assessment of true model performance in other locations, with Random Forest in particular appearing to perform exceptionally (and inaccurately) well when validated by data from the same individuals used to train the models. Very different results were obtained when the models were validated using independent data from the three other sources. Each of these three independent validation data sets gave a different result in terms of the best overall model. The average of independent validation across these three validation datasets suggested that the best overall model produced for potential wildcat occurrence and habitat suitability was obtained by an ensemble average of the global Generalized Linear Model (GLM) and Random Forest models with the ecologically weighted GLM and Random Forest models. This suggests that the debate over whether which of GLM vs machine learning approaches is superior or whether global vs aggregated nonstationary modeling is superior may be a false choice. The results presented here show that the best prediction applies a combination of all of these approaches in an ensemble modeling framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助LEOJAY采纳,获得10
刚刚
刚刚
蜜桃小丸子完成签到 ,获得积分10
1秒前
打打应助大鸡腿采纳,获得10
1秒前
yamigogogo完成签到,获得积分10
3秒前
小林同学0219完成签到 ,获得积分10
3秒前
舒服的摇伽完成签到 ,获得积分10
3秒前
3秒前
4秒前
Awei完成签到,获得积分10
4秒前
圈圈完成签到 ,获得积分10
4秒前
Only完成签到 ,获得积分10
5秒前
是阿瑾呀发布了新的文献求助10
7秒前
Anoxra完成签到 ,获得积分10
8秒前
一个爱打乒乓球的彪完成签到 ,获得积分10
8秒前
长庚完成签到,获得积分10
8秒前
arui发布了新的文献求助10
8秒前
机灵花生完成签到,获得积分10
9秒前
10秒前
33完成签到 ,获得积分10
10秒前
小路完成签到,获得积分10
11秒前
深情安青应助arui采纳,获得10
13秒前
失眠的流沙完成签到 ,获得积分10
14秒前
粥粥完成签到 ,获得积分10
14秒前
Luminous完成签到,获得积分10
14秒前
开放如天完成签到 ,获得积分10
15秒前
Bismarck完成签到,获得积分10
15秒前
19秒前
调皮摇伽完成签到 ,获得积分20
19秒前
白樱恋曲完成签到 ,获得积分10
20秒前
HY完成签到 ,获得积分10
20秒前
凩疯完成签到,获得积分10
21秒前
zy发布了新的文献求助10
21秒前
江枫渔火完成签到 ,获得积分10
22秒前
yznfly应助pppcpppdpppy采纳,获得30
23秒前
23秒前
呆二龙完成签到 ,获得积分10
24秒前
池木完成签到 ,获得积分10
24秒前
怡然的若山完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458656
求助须知:如何正确求助?哪些是违规求助? 4564689
关于积分的说明 14296452
捐赠科研通 4489716
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448992
关于科研通互助平台的介绍 1424502