GLSEC: Global and local semantic-enhanced contrastive framework for knowledge graph completion

计算机科学 知识图 图形 人工智能 自然语言处理 理论计算机科学
作者
Ruixin Ma,Xiaoru Wang,Cunxi Cao,Xiya Bu,Hao Wu,Liang Zhao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:250: 123793-123793 被引量:4
标识
DOI:10.1016/j.eswa.2024.123793
摘要

Knowledge graph completion (KGC) aims to infer missing links between entities in knowledge graphs (KGs). Recently, models based on graph neural networks (GNNs) have gained widespread attention due to their effectiveness in leveraging the topological structure information of entities. Meanwhile, contrastive learning (CL) has been employed in GNNs-based models to provide more supervised signals for better entity representation in a self-supervised manner. However, existing methods overlook the potential global semantic collaboration among entities within the entire KG. And the application of CL in KGC models often adopt random graph augmentation or basic node structure contrast, leading to suboptimal performance. To tackle them, we propose a Global and Local Semantic-Enhanced Contrastive Framework (GLSEC) for KGC. Specifically, we develop a global Attribute-aware encoder to capture the global semantic features of entities based on an entity-entity Attribute Interaction Graph (AIG). Additionally, we design a Light Graph Aggregation Network (Light-GAN) that innovatively updates the global semantic features using the AIG, combining both efficiency and a lightweight design. Furthermore, we introduce a Global-Local cross-view Contrastive Learning (GLCL) method that contrasts embeddings from global and local views, thereby improving contrastive sample quality and boosting the model's understanding of entities in various contexts. Extensive experiments show that our model outperforms state-of-the-art KGC methods on benchmark datasets FB15k-237 and WN18RR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助是阿龙呀采纳,获得30
刚刚
1秒前
烟花应助DQ采纳,获得10
1秒前
hrpppp关注了科研通微信公众号
1秒前
Shannon应助哦啦啦采纳,获得10
2秒前
共享精神应助哦啦啦采纳,获得10
2秒前
vlovy发布了新的文献求助10
2秒前
罗皮特完成签到,获得积分10
2秒前
文赟慧发布了新的文献求助10
3秒前
crazyrock完成签到,获得积分10
3秒前
4秒前
Akim应助tuzhihong采纳,获得10
4秒前
4秒前
4秒前
彭于晏应助jingzhe采纳,获得10
5秒前
xixi完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
深情安青应助origin采纳,获得10
9秒前
浮游应助赤潮采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
xixi发布了新的文献求助10
11秒前
11秒前
三三得星完成签到 ,获得积分10
11秒前
雪山飞龙发布了新的文献求助10
12秒前
13秒前
安静的雅香完成签到,获得积分10
14秒前
小航2025发布了新的文献求助10
14秒前
善学以致用应助雾昂采纳,获得10
14秒前
木子木公完成签到,获得积分10
15秒前
zxp发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
nbnmbm发布了新的文献求助10
19秒前
QOP应助小曹努力采纳,获得10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4848620
求助须知:如何正确求助?哪些是违规求助? 4148371
关于积分的说明 12849751
捐赠科研通 3895661
什么是DOI,文献DOI怎么找? 2141136
邀请新用户注册赠送积分活动 1160848
关于科研通互助平台的介绍 1060883