Rethinking Multi-view Representation Learning via Distilled Disentangling

代表(政治) 人工智能 蒸馏水 计算机科学 化学 色谱法 政治学 法学 政治
作者
Guanzhou Ke,Bo Wang,Xiaoli Wang,Shengfeng He
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.10897
摘要

Multi-view representation learning aims to derive robust representations that are both view-consistent and view-specific from diverse data sources. This paper presents an in-depth analysis of existing approaches in this domain, highlighting a commonly overlooked aspect: the redundancy between view-consistent and view-specific representations. To this end, we propose an innovative framework for multi-view representation learning, which incorporates a technique we term 'distilled disentangling'. Our method introduces the concept of masked cross-view prediction, enabling the extraction of compact, high-quality view-consistent representations from various sources without incurring extra computational overhead. Additionally, we develop a distilled disentangling module that efficiently filters out consistency-related information from multi-view representations, resulting in purer view-specific representations. This approach significantly reduces redundancy between view-consistent and view-specific representations, enhancing the overall efficiency of the learning process. Our empirical evaluations reveal that higher mask ratios substantially improve the quality of view-consistent representations. Moreover, we find that reducing the dimensionality of view-consistent representations relative to that of view-specific representations further refines the quality of the combined representations. Our code is accessible at: https://github.com/Guanzhou-Ke/MRDD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助绝尘采纳,获得10
刚刚
jiwn发布了新的文献求助10
1秒前
pearsir完成签到,获得积分10
1秒前
april666666发布了新的文献求助10
4秒前
Hello应助poohpooh采纳,获得10
5秒前
6秒前
Lucas应助会飞的扁担采纳,获得10
6秒前
yhx发布了新的文献求助10
9秒前
研友_VZG7GZ应助芷莯采纳,获得10
10秒前
sduweiyu完成签到 ,获得积分10
13秒前
落后妖妖完成签到 ,获得积分10
13秒前
14秒前
15秒前
18秒前
神勇嫣发布了新的文献求助10
18秒前
sdgasdca完成签到,获得积分10
18秒前
简单的银耳汤完成签到,获得积分10
19秒前
沏碗麻花完成签到,获得积分20
19秒前
Brilliant完成签到,获得积分10
19秒前
走走发布了新的文献求助10
20秒前
21秒前
21秒前
sdgasdca发布了新的文献求助10
22秒前
22秒前
高源伯发布了新的文献求助10
22秒前
yu_jy完成签到,获得积分10
23秒前
24秒前
芷莯发布了新的文献求助10
24秒前
会飞的扁担完成签到,获得积分10
24秒前
artemis发布了新的文献求助20
25秒前
daisy发布了新的文献求助10
25秒前
残酷的风完成签到,获得积分10
25秒前
加油加油发布了新的文献求助10
28秒前
yu_jy发布了新的文献求助10
31秒前
华仔应助神勇嫣采纳,获得10
32秒前
wang完成签到,获得积分10
35秒前
37秒前
科研通AI5应助清清旋雪采纳,获得10
37秒前
自由完成签到,获得积分10
38秒前
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789447
求助须知:如何正确求助?哪些是违规求助? 3334390
关于积分的说明 10270027
捐赠科研通 3050866
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732