材料科学
碳化硅
润滑
陶瓷
摩擦学
复合材料
硅
表面光洁度
表面粗糙度
纹理(宇宙学)
皮秒
激光器
碳化物
冶金
光学
图像(数学)
物理
人工智能
计算机科学
作者
Xu Chen,Chengyun Wang,Jiyan Jiang,Changhao Ji,Shihe Feng,Cheng Yang,Zaiyu Xiang,Yu Long
标识
DOI:10.1016/j.ceramint.2023.06.243
摘要
Hybrid ceramic bearings consisting of silicon carbide (SiC) and GCr15 steel have a wide range of applications. However, under unlubricated and water lubricated conditions, friction between SiC and GCr15 steel inevitably occurs due to interfacial contact (e.g. dry friction and boundary friction). Laser surface texturing, as a promising surface modification technique, has a significant impact on the material friction and wear characteristics aspects. In this paper, the UV picosecond laser was used to process a groove-textured structure on the surface of silicon carbide ceramics with the aim of comparatively investigating the effect of frictional properties of textured SiC surfaces and untextured SiC surfaces under dry friction and water lubrication conditions. The results showed that the picosecond laser successfully machined surface textures on the hard-to-process SiC surface, and the picosecond laser texturing had a significant effect on the tribological behavior of SiC ceramics. Under dry friction conditions, the coefficient of friction (COF) of picosecond laser-textured SiC with GCr15 steel increased (from 0.249 to 0.296) due to the micro-cutting effect and high surface roughness caused by the texture. In contrast, the COF of picosecond laser-textured SiC with GCr15 was significantly reduced under water-lubricated conditions (from 0.22 to 0.167), due to the facilitated frictional chemical reaction on the laser-textured surface, which favors the improved tribological properties of the silicon carbide friction interface.
科研通智能强力驱动
Strongly Powered by AbleSci AI